富表情微博情感分析

IF 0.9 Q4 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Shuo Zhang, Chunyang Ye, Hui Zhou
{"title":"富表情微博情感分析","authors":"Shuo Zhang, Chunyang Ye, Hui Zhou","doi":"10.1109/SmartWorld-UIC-ATC-ScalCom-DigitalTwin-PriComp-Metaverse56740.2022.00284","DOIUrl":null,"url":null,"abstract":"Sentiment analysis for social media can help to explore deeper insight into the attitudes, opinions, and emotions behind the posts. Existing work usually analyze the emoticons and texts of the posts separately, and ignore the impact of emoticons on the emotional polarity of texts. As a result, the polarity of the posts could be marked inaccurately in the scenarios where the polarity of the texts relies on the contextual information of the emoticons. To address this issue, we propose a model, WnhBert-Bi-LSTM, for microblog sentiment analysis. The model trains phrase and emoticon embedding on a large-scale corpus composed of 280,000 Chinese microblogs, and uses the self-attention mechanism to evaluate the impact of emoticons on the overall emotional polarity. By converting emoticons into tractable features, the emoticons can be analyzed jointly with the texts to explore their feature interaction. Evaluations on 8,965 sina microblog posts show that the accuracy of our model is 3.19% higher than the baseline models. In addition, we constructed and open-sourced a new emoticon label corpus with more widely used words and more comprehensive emoticon data than the existing corpus.","PeriodicalId":43791,"journal":{"name":"Scalable Computing-Practice and Experience","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sentiment analysis of microblogs with rich emoticons\",\"authors\":\"Shuo Zhang, Chunyang Ye, Hui Zhou\",\"doi\":\"10.1109/SmartWorld-UIC-ATC-ScalCom-DigitalTwin-PriComp-Metaverse56740.2022.00284\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sentiment analysis for social media can help to explore deeper insight into the attitudes, opinions, and emotions behind the posts. Existing work usually analyze the emoticons and texts of the posts separately, and ignore the impact of emoticons on the emotional polarity of texts. As a result, the polarity of the posts could be marked inaccurately in the scenarios where the polarity of the texts relies on the contextual information of the emoticons. To address this issue, we propose a model, WnhBert-Bi-LSTM, for microblog sentiment analysis. The model trains phrase and emoticon embedding on a large-scale corpus composed of 280,000 Chinese microblogs, and uses the self-attention mechanism to evaluate the impact of emoticons on the overall emotional polarity. By converting emoticons into tractable features, the emoticons can be analyzed jointly with the texts to explore their feature interaction. Evaluations on 8,965 sina microblog posts show that the accuracy of our model is 3.19% higher than the baseline models. In addition, we constructed and open-sourced a new emoticon label corpus with more widely used words and more comprehensive emoticon data than the existing corpus.\",\"PeriodicalId\":43791,\"journal\":{\"name\":\"Scalable Computing-Practice and Experience\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scalable Computing-Practice and Experience\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SmartWorld-UIC-ATC-ScalCom-DigitalTwin-PriComp-Metaverse56740.2022.00284\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scalable Computing-Practice and Experience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SmartWorld-UIC-ATC-ScalCom-DigitalTwin-PriComp-Metaverse56740.2022.00284","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

社交媒体的情感分析可以帮助我们更深入地了解帖子背后的态度、观点和情感。现有的工作通常将表情符号和帖子文本分开分析,而忽略了表情符号对文本情感极性的影响。因此,在文本的极性依赖于表情符号的上下文信息的情况下,帖子的极性可能被不准确地标记出来。为了解决这个问题,我们提出了一个微博情感分析模型WnhBert-Bi-LSTM。该模型在由28万条中文微博组成的大规模语料库上训练短语和表情符号的嵌入,并利用自关注机制评估表情符号对整体情绪极性的影响。通过将表情符号转化为可处理的特征,可以与文本共同分析表情符号,探索它们之间的特征交互。对8965条新浪微博的评价表明,我们的模型的准确率比基线模型高3.19%。此外,我们构建并开源了一个新的表情符号标签语料库,该语料库具有比现有语料库更广泛的使用词和更全面的表情符号数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sentiment analysis of microblogs with rich emoticons
Sentiment analysis for social media can help to explore deeper insight into the attitudes, opinions, and emotions behind the posts. Existing work usually analyze the emoticons and texts of the posts separately, and ignore the impact of emoticons on the emotional polarity of texts. As a result, the polarity of the posts could be marked inaccurately in the scenarios where the polarity of the texts relies on the contextual information of the emoticons. To address this issue, we propose a model, WnhBert-Bi-LSTM, for microblog sentiment analysis. The model trains phrase and emoticon embedding on a large-scale corpus composed of 280,000 Chinese microblogs, and uses the self-attention mechanism to evaluate the impact of emoticons on the overall emotional polarity. By converting emoticons into tractable features, the emoticons can be analyzed jointly with the texts to explore their feature interaction. Evaluations on 8,965 sina microblog posts show that the accuracy of our model is 3.19% higher than the baseline models. In addition, we constructed and open-sourced a new emoticon label corpus with more widely used words and more comprehensive emoticon data than the existing corpus.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Scalable Computing-Practice and Experience
Scalable Computing-Practice and Experience COMPUTER SCIENCE, SOFTWARE ENGINEERING-
CiteScore
2.00
自引率
0.00%
发文量
10
期刊介绍: The area of scalable computing has matured and reached a point where new issues and trends require a professional forum. SCPE will provide this avenue by publishing original refereed papers that address the present as well as the future of parallel and distributed computing. The journal will focus on algorithm development, implementation and execution on real-world parallel architectures, and application of parallel and distributed computing to the solution of real-life problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信