基于折扣奖励准则的扩散过程自适应控制

Q4 Mathematics
B. Escobedo-Trujillo, O. Hernández-Lerma, F. A. Alaffita-Hernández
{"title":"基于折扣奖励准则的扩散过程自适应控制","authors":"B. Escobedo-Trujillo, O. Hernández-Lerma, F. A. Alaffita-Hernández","doi":"10.4064/am2421-10-2020","DOIUrl":null,"url":null,"abstract":". The optimal control problem we are dealing with in this paper is to determine control policies that maximize a discounted reward criterion when the dynamic system evolves as a stochastic differential equation (SDE). Both the instantaneous reward function and the SDE’s drift coef-ficient may depend on an unknown parameter. We give conditions ensur-ing the existence of an asymptotically optimal policy using the so-called Principle of Estimation and Control. We illustrate our results with several examples.","PeriodicalId":52313,"journal":{"name":"Applicationes Mathematicae","volume":"29 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive control of diffusion processes with a discounted reward criterion\",\"authors\":\"B. Escobedo-Trujillo, O. Hernández-Lerma, F. A. Alaffita-Hernández\",\"doi\":\"10.4064/am2421-10-2020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". The optimal control problem we are dealing with in this paper is to determine control policies that maximize a discounted reward criterion when the dynamic system evolves as a stochastic differential equation (SDE). Both the instantaneous reward function and the SDE’s drift coef-ficient may depend on an unknown parameter. We give conditions ensur-ing the existence of an asymptotically optimal policy using the so-called Principle of Estimation and Control. We illustrate our results with several examples.\",\"PeriodicalId\":52313,\"journal\":{\"name\":\"Applicationes Mathematicae\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applicationes Mathematicae\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4064/am2421-10-2020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applicationes Mathematicae","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4064/am2421-10-2020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

. 本文研究的最优控制问题是当动态系统演化为随机微分方程(SDE)时,如何确定使折扣奖励准则最大化的控制策略。瞬时奖励函数和SDE的漂移系数都可能依赖于一个未知参数。我们利用所谓的估计与控制原理给出了保证渐近最优策略存在的条件。我们用几个例子来说明我们的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive control of diffusion processes with a discounted reward criterion
. The optimal control problem we are dealing with in this paper is to determine control policies that maximize a discounted reward criterion when the dynamic system evolves as a stochastic differential equation (SDE). Both the instantaneous reward function and the SDE’s drift coef-ficient may depend on an unknown parameter. We give conditions ensur-ing the existence of an asymptotically optimal policy using the so-called Principle of Estimation and Control. We illustrate our results with several examples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applicationes Mathematicae
Applicationes Mathematicae Mathematics-Applied Mathematics
CiteScore
0.30
自引率
0.00%
发文量
7
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信