{"title":"清除记忆","authors":"P. Stern","doi":"10.1126/SCIENCE.330.6007.1019-A","DOIUrl":null,"url":null,"abstract":"The subunit composition of AMPA receptors at lateral amygdala synapses changes after the acquisition of associative fear. Inhibition of fear responses can be unexpectedly reversed even when a subject is perfectly safe. This can lead to inappropriate reactions to a fear-associated trigger, such as a bright light or loud noise. This type of reaction appears to underpin posttraumatic stress disorder, but there is little understanding of when training to inhibit fear may fail or succeed. Using a combination of electrophysiology and behavioral training in mice, Clem and Huganir observed that fear conditioning increased synaptic transmission by calcium-permeable AMPA receptors into the part of the brain that controls emotional responses (the amygdala). This effect lasted for about a week, during which the fearful memories could be erased if the animals were trained to reduce conditioned fear responses. Postmortem brain slices showed that the fear-induced synaptic changes also reversed, except in transgenic mice with a mutant subunit of the AMPA receptor. R. L. Clem, R. L. Huganir, Calcium-permeable AMPA receptor dynamics mediate fear memory erasure. Science 330, 1108–1112 (2010). [Abstract] [Full Text]","PeriodicalId":49560,"journal":{"name":"Science Signaling","volume":null,"pages":null},"PeriodicalIF":7.3000,"publicationDate":"2010-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Wiping Out Memories\",\"authors\":\"P. Stern\",\"doi\":\"10.1126/SCIENCE.330.6007.1019-A\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The subunit composition of AMPA receptors at lateral amygdala synapses changes after the acquisition of associative fear. Inhibition of fear responses can be unexpectedly reversed even when a subject is perfectly safe. This can lead to inappropriate reactions to a fear-associated trigger, such as a bright light or loud noise. This type of reaction appears to underpin posttraumatic stress disorder, but there is little understanding of when training to inhibit fear may fail or succeed. Using a combination of electrophysiology and behavioral training in mice, Clem and Huganir observed that fear conditioning increased synaptic transmission by calcium-permeable AMPA receptors into the part of the brain that controls emotional responses (the amygdala). This effect lasted for about a week, during which the fearful memories could be erased if the animals were trained to reduce conditioned fear responses. Postmortem brain slices showed that the fear-induced synaptic changes also reversed, except in transgenic mice with a mutant subunit of the AMPA receptor. R. L. Clem, R. L. Huganir, Calcium-permeable AMPA receptor dynamics mediate fear memory erasure. Science 330, 1108–1112 (2010). [Abstract] [Full Text]\",\"PeriodicalId\":49560,\"journal\":{\"name\":\"Science Signaling\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.3000,\"publicationDate\":\"2010-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science Signaling\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1126/SCIENCE.330.6007.1019-A\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Signaling","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1126/SCIENCE.330.6007.1019-A","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The subunit composition of AMPA receptors at lateral amygdala synapses changes after the acquisition of associative fear. Inhibition of fear responses can be unexpectedly reversed even when a subject is perfectly safe. This can lead to inappropriate reactions to a fear-associated trigger, such as a bright light or loud noise. This type of reaction appears to underpin posttraumatic stress disorder, but there is little understanding of when training to inhibit fear may fail or succeed. Using a combination of electrophysiology and behavioral training in mice, Clem and Huganir observed that fear conditioning increased synaptic transmission by calcium-permeable AMPA receptors into the part of the brain that controls emotional responses (the amygdala). This effect lasted for about a week, during which the fearful memories could be erased if the animals were trained to reduce conditioned fear responses. Postmortem brain slices showed that the fear-induced synaptic changes also reversed, except in transgenic mice with a mutant subunit of the AMPA receptor. R. L. Clem, R. L. Huganir, Calcium-permeable AMPA receptor dynamics mediate fear memory erasure. Science 330, 1108–1112 (2010). [Abstract] [Full Text]
Science SignalingBiochemistry, Genetics and Molecular Biology-Molecular Biology
自引率
0.00%
发文量
148
期刊介绍:
Science Signaling is a weekly, online multidisciplinary journal dedicated to the life sciences. Our editorial team's mission is to publish studies that elucidate the fundamental mechanisms underlying biological processes across various organisms. We prioritize research that offers novel insights into physiology, elucidates aberrant mechanisms leading to disease, identifies potential therapeutic targets and strategies, and characterizes the effects of drugs both in vitro and in vivo.