用功率混合型泛函方程表征概率分布

Chin-yuan Hu, G. D. Lin, J. Stoyanov
{"title":"用功率混合型泛函方程表征概率分布","authors":"Chin-yuan Hu, G. D. Lin, J. Stoyanov","doi":"10.3390/MATH9030271","DOIUrl":null,"url":null,"abstract":"We study power-mixture type functional equations in terms of Laplace-Stieltjes transforms of probability distributions. These equations arise when studying distributional equations of the type Z = X + TZ, where T is a known random variable, while the variable Z is defined via X, and we want to `find' X. We provide necessary and sufficient conditions for such functional equations to have unique solutions. The uniqueness is equivalent to a characterization property of a probability distribution. We present results which are either new or extend and improve previous results about functional equations of compound-exponential and compound-Poisson types. In particular, we give another affirmative answer to a question posed by J. Pitman and M. Yor in 2003. We provide explicit illustrative examples and deal with related topics.","PeriodicalId":8470,"journal":{"name":"arXiv: Probability","volume":"27 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterization of Probability Distributions via Functional Equations of Power-Mixture Type\",\"authors\":\"Chin-yuan Hu, G. D. Lin, J. Stoyanov\",\"doi\":\"10.3390/MATH9030271\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study power-mixture type functional equations in terms of Laplace-Stieltjes transforms of probability distributions. These equations arise when studying distributional equations of the type Z = X + TZ, where T is a known random variable, while the variable Z is defined via X, and we want to `find' X. We provide necessary and sufficient conditions for such functional equations to have unique solutions. The uniqueness is equivalent to a characterization property of a probability distribution. We present results which are either new or extend and improve previous results about functional equations of compound-exponential and compound-Poisson types. In particular, we give another affirmative answer to a question posed by J. Pitman and M. Yor in 2003. We provide explicit illustrative examples and deal with related topics.\",\"PeriodicalId\":8470,\"journal\":{\"name\":\"arXiv: Probability\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Probability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/MATH9030271\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Probability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/MATH9030271","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

利用概率分布的Laplace-Stieltjes变换研究了功率混合型泛函方程。这些方程是在研究Z = X + TZ类型的分布方程时产生的,其中T是已知的随机变量,而变量Z是通过X定义的,我们想要“找到”X。我们提供了这种泛函方程具有唯一解的充分必要条件。唯一性等价于一个概率分布的表征性质。本文给出了一些关于复合指数型和复合泊松型泛函方程的新结果或推广和改进了以往的结果。特别是,我们对J. Pitman和M. Yor在2003年提出的一个问题给出了另一个肯定的答案。我们提供了明确的说明性的例子,并处理相关的主题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Characterization of Probability Distributions via Functional Equations of Power-Mixture Type
We study power-mixture type functional equations in terms of Laplace-Stieltjes transforms of probability distributions. These equations arise when studying distributional equations of the type Z = X + TZ, where T is a known random variable, while the variable Z is defined via X, and we want to `find' X. We provide necessary and sufficient conditions for such functional equations to have unique solutions. The uniqueness is equivalent to a characterization property of a probability distribution. We present results which are either new or extend and improve previous results about functional equations of compound-exponential and compound-Poisson types. In particular, we give another affirmative answer to a question posed by J. Pitman and M. Yor in 2003. We provide explicit illustrative examples and deal with related topics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信