支持向量机与逻辑回归的混合β转弯预测方法

M. Elbashir, Jianxin Wang, Fang Wu
{"title":"支持向量机与逻辑回归的混合β转弯预测方法","authors":"M. Elbashir, Jianxin Wang, Fang Wu","doi":"10.1109/BIBMW.2012.6470205","DOIUrl":null,"url":null,"abstract":"A β-turn is a secondary protein structure type that plays a significant role in protein folding, stability, and molecular recognition. It is the most common type of non-repetitive structures. On average 25% of amino acids in protein structures are located in β-turns. In this paper, we propose a hybrid approach of support vector machines (SVMs) with logistic regression (LR) for β-turn prediction. In this hybrid approach, the non β-turn class in a training set is under-sampled several times and combined with the β-turn class to create a number of balanced sets. Each balanced set is used for training one SVM at a time. The results of the SVMs are aggregated by using a logistic regression model. By adopting this hybrid approach, we cannot only avoid the difficulty of imbalanced data, but also have outputs with probability, and less ambiguous than combining SVM with other methods such as voting. Our simulation studies on BT426, and other datasets show that this hybrid approach achieves favorable performance in predicting β-turns as measured by the Matthew correlation coefficient (MCC) when compared with other competing methods.","PeriodicalId":6392,"journal":{"name":"2012 IEEE International Conference on Bioinformatics and Biomedicine Workshops","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2012-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A hybrid approach of support vector machines with logistic regression for β-turn prediction\",\"authors\":\"M. Elbashir, Jianxin Wang, Fang Wu\",\"doi\":\"10.1109/BIBMW.2012.6470205\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A β-turn is a secondary protein structure type that plays a significant role in protein folding, stability, and molecular recognition. It is the most common type of non-repetitive structures. On average 25% of amino acids in protein structures are located in β-turns. In this paper, we propose a hybrid approach of support vector machines (SVMs) with logistic regression (LR) for β-turn prediction. In this hybrid approach, the non β-turn class in a training set is under-sampled several times and combined with the β-turn class to create a number of balanced sets. Each balanced set is used for training one SVM at a time. The results of the SVMs are aggregated by using a logistic regression model. By adopting this hybrid approach, we cannot only avoid the difficulty of imbalanced data, but also have outputs with probability, and less ambiguous than combining SVM with other methods such as voting. Our simulation studies on BT426, and other datasets show that this hybrid approach achieves favorable performance in predicting β-turns as measured by the Matthew correlation coefficient (MCC) when compared with other competing methods.\",\"PeriodicalId\":6392,\"journal\":{\"name\":\"2012 IEEE International Conference on Bioinformatics and Biomedicine Workshops\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE International Conference on Bioinformatics and Biomedicine Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIBMW.2012.6470205\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Conference on Bioinformatics and Biomedicine Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBMW.2012.6470205","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

β-turn是蛋白质的二级结构类型,在蛋白质折叠、稳定性和分子识别中起着重要作用。这是最常见的非重复结构。蛋白质结构中平均有25%的氨基酸位于β-旋上。在本文中,我们提出了一种支持向量机(svm)和逻辑回归(LR)的混合方法用于β-turn预测。在这种混合方法中,训练集中的非β-turn类被欠采样多次,并与β-turn类结合以创建多个平衡集。每个平衡集用于每次训练一个支持向量机。使用逻辑回归模型对支持向量机的结果进行聚合。采用这种混合方法,既避免了数据不平衡的困难,又具有概率输出,并且比支持向量机与其他方法(如投票)相结合具有更小的模糊性。我们在BT426和其他数据集上的仿真研究表明,与其他竞争方法相比,该混合方法在马修相关系数(MCC)测量的β-匝数预测方面取得了良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A hybrid approach of support vector machines with logistic regression for β-turn prediction
A β-turn is a secondary protein structure type that plays a significant role in protein folding, stability, and molecular recognition. It is the most common type of non-repetitive structures. On average 25% of amino acids in protein structures are located in β-turns. In this paper, we propose a hybrid approach of support vector machines (SVMs) with logistic regression (LR) for β-turn prediction. In this hybrid approach, the non β-turn class in a training set is under-sampled several times and combined with the β-turn class to create a number of balanced sets. Each balanced set is used for training one SVM at a time. The results of the SVMs are aggregated by using a logistic regression model. By adopting this hybrid approach, we cannot only avoid the difficulty of imbalanced data, but also have outputs with probability, and less ambiguous than combining SVM with other methods such as voting. Our simulation studies on BT426, and other datasets show that this hybrid approach achieves favorable performance in predicting β-turns as measured by the Matthew correlation coefficient (MCC) when compared with other competing methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信