{"title":"基于稀疏光流的第一人称视角相机活动识别","authors":"Peng Yua Kao, Yan-Jing Lei, Chia-Hao Chang, Chu-Song Chen, Ming-Sui Lee, Y. Hung","doi":"10.1109/ICPR48806.2021.9412330","DOIUrl":null,"url":null,"abstract":"First-person-view (FPV) cameras are finding wide use in daily life to record activities and sports. In this paper, we propose a succinct and robust 3D convolutional neural network (CNN) architecture accompanied with an ensemble-learning network for activity recognition with FPV videos. The proposed 3D CNN is trained on low-resolution (32 × 32) sparse optical flows using FPV video datasets consisting of daily activities. According to the experimental results, our network achieves an average accuracy of 90%.","PeriodicalId":6783,"journal":{"name":"2020 25th International Conference on Pattern Recognition (ICPR)","volume":"28 6 1","pages":"81-86"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Activity Recognition Using First-Person-View Cameras Based on Sparse Optical Flows\",\"authors\":\"Peng Yua Kao, Yan-Jing Lei, Chia-Hao Chang, Chu-Song Chen, Ming-Sui Lee, Y. Hung\",\"doi\":\"10.1109/ICPR48806.2021.9412330\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"First-person-view (FPV) cameras are finding wide use in daily life to record activities and sports. In this paper, we propose a succinct and robust 3D convolutional neural network (CNN) architecture accompanied with an ensemble-learning network for activity recognition with FPV videos. The proposed 3D CNN is trained on low-resolution (32 × 32) sparse optical flows using FPV video datasets consisting of daily activities. According to the experimental results, our network achieves an average accuracy of 90%.\",\"PeriodicalId\":6783,\"journal\":{\"name\":\"2020 25th International Conference on Pattern Recognition (ICPR)\",\"volume\":\"28 6 1\",\"pages\":\"81-86\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 25th International Conference on Pattern Recognition (ICPR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPR48806.2021.9412330\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 25th International Conference on Pattern Recognition (ICPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR48806.2021.9412330","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Activity Recognition Using First-Person-View Cameras Based on Sparse Optical Flows
First-person-view (FPV) cameras are finding wide use in daily life to record activities and sports. In this paper, we propose a succinct and robust 3D convolutional neural network (CNN) architecture accompanied with an ensemble-learning network for activity recognition with FPV videos. The proposed 3D CNN is trained on low-resolution (32 × 32) sparse optical flows using FPV video datasets consisting of daily activities. According to the experimental results, our network achieves an average accuracy of 90%.