{"title":"进口水力学中使用的流量系数","authors":"M. Gómez, J. Tellez-Álvarez, B. Russo","doi":"10.1680/jwama.22.00059","DOIUrl":null,"url":null,"abstract":"Urban pluvial floods can be produced or exacerbated by insufficient inlets density or by their poor hydraulic efficiency. A proper regard on inlet hydraulic performance is essential to guarantee the correct functioning of urban drainage systems during heavy storm events. The recent advances in computation analysis in the field of hydrodynamics modelling allow to use the well-known concept of dual drainage for design and planning purposes simulating flow transfers between surface layer (street) and underground layer (sewer) through a proper hydraulic characterization of inlet efficiency. Currently, powerful commercial software packages allow the simulation of flow transferring including different approaches and formulas. Many of these approaches include the possibility to treat sewer inlets as an orifice. In this context, this paper presents a methodology to obtain orifice discharge coefficients for three inlets previously tested at the Hydraulic Laboratory of the Technical University of Catalonia. Obtained results show discharge coefficient values between 0,18 and 0,58 with a Froude number between 1.12 and 4.4, quite far from usual recommended values. The procedure can be applied even to non-tested grates.","PeriodicalId":54569,"journal":{"name":"Proceedings of the Institution of Civil Engineers-Water Management","volume":"15 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Discharge coefficients to be used in inlet hydraulics\",\"authors\":\"M. Gómez, J. Tellez-Álvarez, B. Russo\",\"doi\":\"10.1680/jwama.22.00059\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Urban pluvial floods can be produced or exacerbated by insufficient inlets density or by their poor hydraulic efficiency. A proper regard on inlet hydraulic performance is essential to guarantee the correct functioning of urban drainage systems during heavy storm events. The recent advances in computation analysis in the field of hydrodynamics modelling allow to use the well-known concept of dual drainage for design and planning purposes simulating flow transfers between surface layer (street) and underground layer (sewer) through a proper hydraulic characterization of inlet efficiency. Currently, powerful commercial software packages allow the simulation of flow transferring including different approaches and formulas. Many of these approaches include the possibility to treat sewer inlets as an orifice. In this context, this paper presents a methodology to obtain orifice discharge coefficients for three inlets previously tested at the Hydraulic Laboratory of the Technical University of Catalonia. Obtained results show discharge coefficient values between 0,18 and 0,58 with a Froude number between 1.12 and 4.4, quite far from usual recommended values. The procedure can be applied even to non-tested grates.\",\"PeriodicalId\":54569,\"journal\":{\"name\":\"Proceedings of the Institution of Civil Engineers-Water Management\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Institution of Civil Engineers-Water Management\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1680/jwama.22.00059\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Civil Engineers-Water Management","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1680/jwama.22.00059","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Discharge coefficients to be used in inlet hydraulics
Urban pluvial floods can be produced or exacerbated by insufficient inlets density or by their poor hydraulic efficiency. A proper regard on inlet hydraulic performance is essential to guarantee the correct functioning of urban drainage systems during heavy storm events. The recent advances in computation analysis in the field of hydrodynamics modelling allow to use the well-known concept of dual drainage for design and planning purposes simulating flow transfers between surface layer (street) and underground layer (sewer) through a proper hydraulic characterization of inlet efficiency. Currently, powerful commercial software packages allow the simulation of flow transferring including different approaches and formulas. Many of these approaches include the possibility to treat sewer inlets as an orifice. In this context, this paper presents a methodology to obtain orifice discharge coefficients for three inlets previously tested at the Hydraulic Laboratory of the Technical University of Catalonia. Obtained results show discharge coefficient values between 0,18 and 0,58 with a Froude number between 1.12 and 4.4, quite far from usual recommended values. The procedure can be applied even to non-tested grates.
期刊介绍:
Water Management publishes papers on all aspects of water treatment, water supply, river, wetland and catchment management, inland waterways and urban regeneration.
Topics covered: applied fluid dynamics and water (including supply, treatment and sewerage) and river engineering; together with the increasingly important fields of wetland and catchment management, groundwater and contaminated land, waterfront development and urban regeneration. The scope also covers hydroinformatics tools, risk and uncertainty methods, as well as environmental, social and economic issues relating to sustainable development.