{"title":"利用图卷积神经网络G-CNN压缩时变油藏模拟","authors":"S. Madasu, S. Siddiqui, Keshava P. Rangarajan","doi":"10.2118/197444-ms","DOIUrl":null,"url":null,"abstract":"\n Reservoir simulation results currently provide the basis for important reservoir engineering decisions; grid complexity and non-linearity of these models demand high computational time and memory. The physics-based simulation process must be repeated to increase model prediction accuracy or to perform history matching; consequently, the simulation process is often time-consuming. This paper describes a new methodology based on a deep neural network (DNN) technique, the graph convolutional neural network (G-CNN). G-CNN increases the modeling prediction speed and efficiency by compressing the computational time and memory usage of the reservoir simulation. A G-CNN model was used to perform the reservoir simulations described.\n This new methodology combines physics-based and data-driven models in reservoir simulation. The workflow generates training datasets, enabling intelligent sampling of the reservoir production data in the G-CNN training process. Bottomhole pressure constraints were set for all simulations. The production data generated by the reservoir model, with the mesh connectivity information, is used to generate the G-CNN model. This approach can be viewed as hybrid data-driven, retaining the underlying physics of the reservoir simulator. The resulting G-CNN model can perform reservoir simulations for any computational grid and production time horizon. The method uses convolutional neural network and mesh connections in a fully differentiable scheme to compress the simulation state size and learns the reservoir dynamics on this compressed form.\n G-CNN analysis was performed on an Eagle Ford-type reservoir model. The transmissibility, pore volume, pressure, and saturation at an initial time state were used as input features to predict final pressure and saturations. Prediction accuracy of 95% was obtained by hyperparameter tuning off the G-CNN architecture. By compressing the simulation state size and learning the time-dependent reservoir dynamics on this compressed representation, reservoir simulations can be emulated by a graph neural network which uses significantly less computation and memory. The G-CNN model can be used on any computational grid because it preserves the structure of the physics. The G-CNN model is trained by mapping an initial time state to a future prediction time state; consequently, the model can be used for generalizing predictions in any grid sizes and time steps while maintaining accuracy. The result is a computationally and memory efficient neural network that can be iterated and queried to reproduce a reservoir simulation.\n This novel methodology combines field-scale physics-based reservoir modeling and DNN for reservoir simulations. The new reservoir simulation workflow, based on the G-CNN model, maps the time state predictions in a resampled grid, reducing computational time and memory. The new methodology presents a general method for compressing reservoir simulations, assisting in fast and accurate production forecasting.","PeriodicalId":11061,"journal":{"name":"Day 1 Mon, November 11, 2019","volume":"88 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Compressing Time-Dependent Reservoir Simulations Using Graph-Convolutional Neural Network G-CNN\",\"authors\":\"S. Madasu, S. Siddiqui, Keshava P. Rangarajan\",\"doi\":\"10.2118/197444-ms\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Reservoir simulation results currently provide the basis for important reservoir engineering decisions; grid complexity and non-linearity of these models demand high computational time and memory. The physics-based simulation process must be repeated to increase model prediction accuracy or to perform history matching; consequently, the simulation process is often time-consuming. This paper describes a new methodology based on a deep neural network (DNN) technique, the graph convolutional neural network (G-CNN). G-CNN increases the modeling prediction speed and efficiency by compressing the computational time and memory usage of the reservoir simulation. A G-CNN model was used to perform the reservoir simulations described.\\n This new methodology combines physics-based and data-driven models in reservoir simulation. The workflow generates training datasets, enabling intelligent sampling of the reservoir production data in the G-CNN training process. Bottomhole pressure constraints were set for all simulations. The production data generated by the reservoir model, with the mesh connectivity information, is used to generate the G-CNN model. This approach can be viewed as hybrid data-driven, retaining the underlying physics of the reservoir simulator. The resulting G-CNN model can perform reservoir simulations for any computational grid and production time horizon. The method uses convolutional neural network and mesh connections in a fully differentiable scheme to compress the simulation state size and learns the reservoir dynamics on this compressed form.\\n G-CNN analysis was performed on an Eagle Ford-type reservoir model. The transmissibility, pore volume, pressure, and saturation at an initial time state were used as input features to predict final pressure and saturations. Prediction accuracy of 95% was obtained by hyperparameter tuning off the G-CNN architecture. By compressing the simulation state size and learning the time-dependent reservoir dynamics on this compressed representation, reservoir simulations can be emulated by a graph neural network which uses significantly less computation and memory. The G-CNN model can be used on any computational grid because it preserves the structure of the physics. The G-CNN model is trained by mapping an initial time state to a future prediction time state; consequently, the model can be used for generalizing predictions in any grid sizes and time steps while maintaining accuracy. The result is a computationally and memory efficient neural network that can be iterated and queried to reproduce a reservoir simulation.\\n This novel methodology combines field-scale physics-based reservoir modeling and DNN for reservoir simulations. The new reservoir simulation workflow, based on the G-CNN model, maps the time state predictions in a resampled grid, reducing computational time and memory. The new methodology presents a general method for compressing reservoir simulations, assisting in fast and accurate production forecasting.\",\"PeriodicalId\":11061,\"journal\":{\"name\":\"Day 1 Mon, November 11, 2019\",\"volume\":\"88 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 1 Mon, November 11, 2019\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/197444-ms\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 1 Mon, November 11, 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/197444-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Compressing Time-Dependent Reservoir Simulations Using Graph-Convolutional Neural Network G-CNN
Reservoir simulation results currently provide the basis for important reservoir engineering decisions; grid complexity and non-linearity of these models demand high computational time and memory. The physics-based simulation process must be repeated to increase model prediction accuracy or to perform history matching; consequently, the simulation process is often time-consuming. This paper describes a new methodology based on a deep neural network (DNN) technique, the graph convolutional neural network (G-CNN). G-CNN increases the modeling prediction speed and efficiency by compressing the computational time and memory usage of the reservoir simulation. A G-CNN model was used to perform the reservoir simulations described.
This new methodology combines physics-based and data-driven models in reservoir simulation. The workflow generates training datasets, enabling intelligent sampling of the reservoir production data in the G-CNN training process. Bottomhole pressure constraints were set for all simulations. The production data generated by the reservoir model, with the mesh connectivity information, is used to generate the G-CNN model. This approach can be viewed as hybrid data-driven, retaining the underlying physics of the reservoir simulator. The resulting G-CNN model can perform reservoir simulations for any computational grid and production time horizon. The method uses convolutional neural network and mesh connections in a fully differentiable scheme to compress the simulation state size and learns the reservoir dynamics on this compressed form.
G-CNN analysis was performed on an Eagle Ford-type reservoir model. The transmissibility, pore volume, pressure, and saturation at an initial time state were used as input features to predict final pressure and saturations. Prediction accuracy of 95% was obtained by hyperparameter tuning off the G-CNN architecture. By compressing the simulation state size and learning the time-dependent reservoir dynamics on this compressed representation, reservoir simulations can be emulated by a graph neural network which uses significantly less computation and memory. The G-CNN model can be used on any computational grid because it preserves the structure of the physics. The G-CNN model is trained by mapping an initial time state to a future prediction time state; consequently, the model can be used for generalizing predictions in any grid sizes and time steps while maintaining accuracy. The result is a computationally and memory efficient neural network that can be iterated and queried to reproduce a reservoir simulation.
This novel methodology combines field-scale physics-based reservoir modeling and DNN for reservoir simulations. The new reservoir simulation workflow, based on the G-CNN model, maps the time state predictions in a resampled grid, reducing computational time and memory. The new methodology presents a general method for compressing reservoir simulations, assisting in fast and accurate production forecasting.