用2维代数构造到格拉斯曼的k正则映射

Joachim Jelisiejew, H. Keneshlou
{"title":"用2维代数构造到格拉斯曼的k正则映射","authors":"Joachim Jelisiejew, H. Keneshlou","doi":"10.2422/2036-2145.202201_009","DOIUrl":null,"url":null,"abstract":"A continuous map $\\mathbb{C}^n\\to Gr(\\tau, N)$ is $k$-regular if the $\\tau$-dimensional subspaces corresponding to images of any $k$ distinct points span a $\\tau k$-dimensional space. For $\\tau = 1$ this essentially recovers the classical notion of a $k$-regular map $\\mathbb{C}^n\\to \\mathbb{C}^N$. We provide new examples of $k$-regular maps, both in the classical setting $\\tau = 1$ and for $\\tau\\geq 2$, where these are the first examples known. Our methods come from algebraic geometry, following and generalizing Buczy\\'{n}ski-Januszkiewicz-Jelisiejew-Micha{\\l}ek. The key and highly nontrivial part of the argument is proving that certain loci of the Hilbert scheme of points have expected dimension. As an important side result, we prove irreducibility of the punctual Hilbert scheme of $k$ points on a threefold, for $k\\leq 11$.","PeriodicalId":8132,"journal":{"name":"ANNALI SCUOLA NORMALE SUPERIORE - CLASSE DI SCIENZE","volume":"68 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"On construction of k-regular maps to Grassmannians via algebras of socle dimension two\",\"authors\":\"Joachim Jelisiejew, H. Keneshlou\",\"doi\":\"10.2422/2036-2145.202201_009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A continuous map $\\\\mathbb{C}^n\\\\to Gr(\\\\tau, N)$ is $k$-regular if the $\\\\tau$-dimensional subspaces corresponding to images of any $k$ distinct points span a $\\\\tau k$-dimensional space. For $\\\\tau = 1$ this essentially recovers the classical notion of a $k$-regular map $\\\\mathbb{C}^n\\\\to \\\\mathbb{C}^N$. We provide new examples of $k$-regular maps, both in the classical setting $\\\\tau = 1$ and for $\\\\tau\\\\geq 2$, where these are the first examples known. Our methods come from algebraic geometry, following and generalizing Buczy\\\\'{n}ski-Januszkiewicz-Jelisiejew-Micha{\\\\l}ek. The key and highly nontrivial part of the argument is proving that certain loci of the Hilbert scheme of points have expected dimension. As an important side result, we prove irreducibility of the punctual Hilbert scheme of $k$ points on a threefold, for $k\\\\leq 11$.\",\"PeriodicalId\":8132,\"journal\":{\"name\":\"ANNALI SCUOLA NORMALE SUPERIORE - CLASSE DI SCIENZE\",\"volume\":\"68 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ANNALI SCUOLA NORMALE SUPERIORE - CLASSE DI SCIENZE\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2422/2036-2145.202201_009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ANNALI SCUOLA NORMALE SUPERIORE - CLASSE DI SCIENZE","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2422/2036-2145.202201_009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

如果与任意$k$不同点的图像对应的$\tau$维子空间跨越$\tau k$维空间,则连续映射$\mathbb{C}^n\to Gr(\tau, N)$是$k$ -正则的。对于$\tau = 1$,这基本上恢复了经典的$k$ -正则映射$\mathbb{C}^n\to \mathbb{C}^N$的概念。我们提供了在经典设置$\tau = 1$和$\tau\geq 2$中$k$ -正则映射的新示例,其中这些是已知的第一个示例。我们的方法来自代数几何,遵循并推广Buczyński-Januszkiewicz-Jelisiejew-Micha {\l} ek。论证的关键和高度不平凡的部分是证明点的希尔伯特格式的某些轨迹具有期望维数。作为一个重要的副结果,我们证明了$k\leq 11$在三重曲面上$k$点的准时希尔伯特格式的不可约性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On construction of k-regular maps to Grassmannians via algebras of socle dimension two
A continuous map $\mathbb{C}^n\to Gr(\tau, N)$ is $k$-regular if the $\tau$-dimensional subspaces corresponding to images of any $k$ distinct points span a $\tau k$-dimensional space. For $\tau = 1$ this essentially recovers the classical notion of a $k$-regular map $\mathbb{C}^n\to \mathbb{C}^N$. We provide new examples of $k$-regular maps, both in the classical setting $\tau = 1$ and for $\tau\geq 2$, where these are the first examples known. Our methods come from algebraic geometry, following and generalizing Buczy\'{n}ski-Januszkiewicz-Jelisiejew-Micha{\l}ek. The key and highly nontrivial part of the argument is proving that certain loci of the Hilbert scheme of points have expected dimension. As an important side result, we prove irreducibility of the punctual Hilbert scheme of $k$ points on a threefold, for $k\leq 11$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信