有限图的对称性与同调

IF 0.1 Q4 MATHEMATICS
Benjamin Atchison, E. Turner
{"title":"有限图的对称性与同调","authors":"Benjamin Atchison, E. Turner","doi":"10.1515/gcc-2015-0003","DOIUrl":null,"url":null,"abstract":"Abstract A finite symmetric graph Γ is a pair (Γ,f)$(\\Gamma ,f)$ , where Γ is a finite graph and f:Γ→Γ$f:\\Gamma \\rightarrow \\Gamma $ is a graph self equivalence or automorphism. We develop several tools for studying such symmetries. In particular, we describe in detail all symmetries with a single edge orbit, we prove that each symmetric graph has a maximal forest that meets each edge orbit in a sequential set of edges – a sequential maximal forest – and we calculate the characteristic polynomial χ f (t)$\\chi _f(t)$ and the minimal polynomial μ f (t)$\\mu _f(t)$ of the linear map H 1 (f):H 1 (Γ,ℤ)→H 1 (Γ,ℤ)$H_1(f):H_1(\\Gamma ,\\mathbb {Z})\\rightarrow H_1(\\Gamma ,\\mathbb {Z})$ . The calculation is in terms of the quotient graph Γ ¯$\\overline{\\Gamma }$ .","PeriodicalId":41862,"journal":{"name":"Groups Complexity Cryptology","volume":"102 1","pages":"11 - 30"},"PeriodicalIF":0.1000,"publicationDate":"2015-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Symmetries of finite graphs and homology\",\"authors\":\"Benjamin Atchison, E. Turner\",\"doi\":\"10.1515/gcc-2015-0003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract A finite symmetric graph Γ is a pair (Γ,f)$(\\\\Gamma ,f)$ , where Γ is a finite graph and f:Γ→Γ$f:\\\\Gamma \\\\rightarrow \\\\Gamma $ is a graph self equivalence or automorphism. We develop several tools for studying such symmetries. In particular, we describe in detail all symmetries with a single edge orbit, we prove that each symmetric graph has a maximal forest that meets each edge orbit in a sequential set of edges – a sequential maximal forest – and we calculate the characteristic polynomial χ f (t)$\\\\chi _f(t)$ and the minimal polynomial μ f (t)$\\\\mu _f(t)$ of the linear map H 1 (f):H 1 (Γ,ℤ)→H 1 (Γ,ℤ)$H_1(f):H_1(\\\\Gamma ,\\\\mathbb {Z})\\\\rightarrow H_1(\\\\Gamma ,\\\\mathbb {Z})$ . The calculation is in terms of the quotient graph Γ ¯$\\\\overline{\\\\Gamma }$ .\",\"PeriodicalId\":41862,\"journal\":{\"name\":\"Groups Complexity Cryptology\",\"volume\":\"102 1\",\"pages\":\"11 - 30\"},\"PeriodicalIF\":0.1000,\"publicationDate\":\"2015-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Groups Complexity Cryptology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/gcc-2015-0003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Groups Complexity Cryptology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/gcc-2015-0003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

有限对称图Γ是一对(Γ,f) $(\Gamma ,f)$,其中Γ是一个有限图,f:Γ→Γ $f:\Gamma \rightarrow \Gamma $是一个图的自等价或自同构。我们开发了一些工具来研究这种对称性。特别地,我们详细地描述了具有单个边轨道的所有对称,我们证明了每个对称图都有一个满足序列边集中的每个边轨道的极大森林-一个序列极大森林-我们计算了线性映射h1 (f)的特征多项式χ f (t) $\chi _f(t)$和最小多项式μ f (t) $\mu _f(t)$: h1 (Γ, 0)→h1 (Γ, 0) $H_1(f):H_1(\Gamma ,\mathbb {Z})\rightarrow H_1(\Gamma ,\mathbb {Z})$。计算是根据商图Γ¯$\overline{\Gamma }$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Symmetries of finite graphs and homology
Abstract A finite symmetric graph Γ is a pair (Γ,f)$(\Gamma ,f)$ , where Γ is a finite graph and f:Γ→Γ$f:\Gamma \rightarrow \Gamma $ is a graph self equivalence or automorphism. We develop several tools for studying such symmetries. In particular, we describe in detail all symmetries with a single edge orbit, we prove that each symmetric graph has a maximal forest that meets each edge orbit in a sequential set of edges – a sequential maximal forest – and we calculate the characteristic polynomial χ f (t)$\chi _f(t)$ and the minimal polynomial μ f (t)$\mu _f(t)$ of the linear map H 1 (f):H 1 (Γ,ℤ)→H 1 (Γ,ℤ)$H_1(f):H_1(\Gamma ,\mathbb {Z})\rightarrow H_1(\Gamma ,\mathbb {Z})$ . The calculation is in terms of the quotient graph Γ ¯$\overline{\Gamma }$ .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信