人工神经网络方法在数字全息重建图像增强中的应用

Gülhan Ustabas Kaya, Z. Saraç
{"title":"人工神经网络方法在数字全息重建图像增强中的应用","authors":"Gülhan Ustabas Kaya, Z. Saraç","doi":"10.7212/ZKUFBD.V8I2.1186","DOIUrl":null,"url":null,"abstract":"The aim of paper is to use an artificial neural network approach for enhancement of three dimensional image reconstructed in digital holography. An artificial neural network method based on Gerchberg-Saxton algorithm is implemented to reduce the noise and increase the brightness of this image. The results of proposed method have been presented by a relative error. In addition, these relative error figures are supported with error histogram obtained from MATLAB neural network fitting toolbox.","PeriodicalId":17742,"journal":{"name":"Karaelmas Science and Engineering Journal","volume":"65 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Usage of artificial neural networks method for image enhancement of reconstructed image in digital holography\",\"authors\":\"Gülhan Ustabas Kaya, Z. Saraç\",\"doi\":\"10.7212/ZKUFBD.V8I2.1186\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of paper is to use an artificial neural network approach for enhancement of three dimensional image reconstructed in digital holography. An artificial neural network method based on Gerchberg-Saxton algorithm is implemented to reduce the noise and increase the brightness of this image. The results of proposed method have been presented by a relative error. In addition, these relative error figures are supported with error histogram obtained from MATLAB neural network fitting toolbox.\",\"PeriodicalId\":17742,\"journal\":{\"name\":\"Karaelmas Science and Engineering Journal\",\"volume\":\"65 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Karaelmas Science and Engineering Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7212/ZKUFBD.V8I2.1186\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Karaelmas Science and Engineering Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7212/ZKUFBD.V8I2.1186","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文的目的是利用人工神经网络方法对数字全息重建的三维图像进行增强。采用基于Gerchberg-Saxton算法的人工神经网络方法来降低噪声,提高图像的亮度。所提方法的结果以相对误差表示。此外,利用MATLAB神经网络拟合工具箱得到的误差直方图支持这些相对误差图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Usage of artificial neural networks method for image enhancement of reconstructed image in digital holography
The aim of paper is to use an artificial neural network approach for enhancement of three dimensional image reconstructed in digital holography. An artificial neural network method based on Gerchberg-Saxton algorithm is implemented to reduce the noise and increase the brightness of this image. The results of proposed method have been presented by a relative error. In addition, these relative error figures are supported with error histogram obtained from MATLAB neural network fitting toolbox.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信