西印度群岛压实残土的动力特性

IF 2.2 4区 工程技术 Q3 ENGINEERING, GEOLOGICAL
Lila Mouali, G. Veylon, D. Dias, L. Peyras, C. Carvajal, J. Duriez, Eric Antoinet
{"title":"西印度群岛压实残土的动力特性","authors":"Lila Mouali, G. Veylon, D. Dias, L. Peyras, C. Carvajal, J. Duriez, Eric Antoinet","doi":"10.3390/geotechnics3020015","DOIUrl":null,"url":null,"abstract":"This paper presents a laboratory investigation of the strain-dependent cyclic properties of a compacted tropical residual soil as measured in a resonant column and cyclic triaxial testing program. The mechanical properties were evaluated with respect to cyclic shear strain amplitude, initial void ratio, and confining pressure. It was shown that the existing models for the prediction of shear modulus reduction and damping ratio curves were not pertinent in the case of the compacted residual soil studied. Empirical equations were developed for the small-strain shear modulus and the normalized shear modulus, damping ratio, and pore water pressure ratio curves for void ratios between e = 1.00 and e = 1.50 and mean effective pressures of p′ = 50−300 kPa. The comparison of the models to the measured values suggest that the uncertainties associated with each of these models are lower than 20% of the predicted values. The results were established as part of a project for the construction of an embankment dam in the West Indies. However, the methodology as well as the model formulation framework presented in the article can be generalized to other residual soils and applied in all fields of geotechnical engineering.","PeriodicalId":11823,"journal":{"name":"Environmental geotechnics","volume":"25 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2023-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic Properties of a Compacted Residual Soil from the West Indies\",\"authors\":\"Lila Mouali, G. Veylon, D. Dias, L. Peyras, C. Carvajal, J. Duriez, Eric Antoinet\",\"doi\":\"10.3390/geotechnics3020015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a laboratory investigation of the strain-dependent cyclic properties of a compacted tropical residual soil as measured in a resonant column and cyclic triaxial testing program. The mechanical properties were evaluated with respect to cyclic shear strain amplitude, initial void ratio, and confining pressure. It was shown that the existing models for the prediction of shear modulus reduction and damping ratio curves were not pertinent in the case of the compacted residual soil studied. Empirical equations were developed for the small-strain shear modulus and the normalized shear modulus, damping ratio, and pore water pressure ratio curves for void ratios between e = 1.00 and e = 1.50 and mean effective pressures of p′ = 50−300 kPa. The comparison of the models to the measured values suggest that the uncertainties associated with each of these models are lower than 20% of the predicted values. The results were established as part of a project for the construction of an embankment dam in the West Indies. However, the methodology as well as the model formulation framework presented in the article can be generalized to other residual soils and applied in all fields of geotechnical engineering.\",\"PeriodicalId\":11823,\"journal\":{\"name\":\"Environmental geotechnics\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental geotechnics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/geotechnics3020015\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental geotechnics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/geotechnics3020015","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一个实验室研究应变依赖循环特性的热带压实残余土的测量在共振柱和循环三轴试验程序。通过循环剪切应变幅值、初始孔隙比和围压对其力学性能进行了评价。研究结果表明,现有的剪切模量折减和阻尼比曲线预测模型对压实残积土不适用。建立了孔隙比为e = 1.00 ~ e = 1.50,平均有效压力为p′= 50 ~ 300 kPa时的小应变剪切模量、归一化剪切模量、阻尼比和孔隙水压力比曲线的经验方程。模型与实测值的比较表明,与这些模型相关的不确定性低于预测值的20%。研究结果是作为在西印度群岛建造堤坝项目的一部分确定的。然而,本文提出的方法和模型构建框架可以推广到其他残余土,并应用于岩土工程的各个领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamic Properties of a Compacted Residual Soil from the West Indies
This paper presents a laboratory investigation of the strain-dependent cyclic properties of a compacted tropical residual soil as measured in a resonant column and cyclic triaxial testing program. The mechanical properties were evaluated with respect to cyclic shear strain amplitude, initial void ratio, and confining pressure. It was shown that the existing models for the prediction of shear modulus reduction and damping ratio curves were not pertinent in the case of the compacted residual soil studied. Empirical equations were developed for the small-strain shear modulus and the normalized shear modulus, damping ratio, and pore water pressure ratio curves for void ratios between e = 1.00 and e = 1.50 and mean effective pressures of p′ = 50−300 kPa. The comparison of the models to the measured values suggest that the uncertainties associated with each of these models are lower than 20% of the predicted values. The results were established as part of a project for the construction of an embankment dam in the West Indies. However, the methodology as well as the model formulation framework presented in the article can be generalized to other residual soils and applied in all fields of geotechnical engineering.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmental geotechnics
Environmental geotechnics Environmental Science-Water Science and Technology
CiteScore
6.20
自引率
18.20%
发文量
53
期刊介绍: In 21st century living, engineers and researchers need to deal with growing problems related to climate change, oil and water storage, handling, storage and disposal of toxic and hazardous wastes, remediation of contaminated sites, sustainable development and energy derived from the ground. Environmental Geotechnics aims to disseminate knowledge and provides a fresh perspective regarding the basic concepts, theory, techniques and field applicability of innovative testing and analysis methodologies and engineering practices in geoenvironmental engineering. The journal''s Editor in Chief is a Member of the Committee on Publication Ethics. All relevant papers are carefully considered, vetted by a distinguished team of international experts and rapidly published. Full research papers, short communications and comprehensive review articles are published under the following broad subject categories: geochemistry and geohydrology, soil and rock physics, biological processes in soil, soil-atmosphere interaction, electrical, electromagnetic and thermal characteristics of porous media, waste management, utilization of wastes, multiphase science, landslide wasting, soil and water conservation, sensor development and applications, the impact of climatic changes on geoenvironmental, geothermal/ground-source energy, carbon sequestration, oil and gas extraction techniques, uncertainty, reliability and risk, monitoring and forensic geotechnics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信