George M Ongwae, Zichen Liu, Shasha Feng, Mahendra D Chordia, Mohammad Sharifian Gh, Rachita Dash, Brianna E Dalesandro, Taijie Guo, Karl Barry Sharpless, Jiajia Dong, M Sloan Siegrist, Wonpil Im, Marcos M Pires
{"title":"大肠杆菌分子积累的测定","authors":"George M Ongwae, Zichen Liu, Shasha Feng, Mahendra D Chordia, Mohammad Sharifian Gh, Rachita Dash, Brianna E Dalesandro, Taijie Guo, Karl Barry Sharpless, Jiajia Dong, M Sloan Siegrist, Wonpil Im, Marcos M Pires","doi":"10.1101/2023.06.20.545103","DOIUrl":null,"url":null,"abstract":"<p><p>Gram-negative bacterial pathogens pose a significant challenge in drug development due to their outer membranes, which impede the permeation of small molecules. The lack of widely adoptable methods to measure the cytosolic accumulation of compounds in bacterial cells has hindered drug discovery efforts. To address this challenge, we developed the CHloroalkane Azide Membrane Permeability (CHAMP) assay, specifically designed to assess molecule accumulation in the cytosol of Gram-negative bacteria. The CHAMP analysis utilizes biorthogonal epitopes anchored within HaloTag-expressing bacteria and measures the cytosolic arrival of azide-bearing test molecules through strain-promoted azide-alkyne cycloaddition. This workflow allows for robust and rapid accumulation measurements of thousands of azide-tagged small molecules. Our approach consistently yields a large number of accumulation profiles, significantly exceeding the scale of previous measurements in <i>Escherichia coli</i> ( <i>E. coli</i> ). We have validated the CHAMP assay across various chemical and biological contexts, including hyperporinated cells, membrane-permeabilized cells, and E. coli strains with impaired TolC function, a key component of the efflux pump. The CHAMP platform provides a simple, high-throughput, and accessible method that enables the analysis of over 1,000 molecules within hours. This technique addresses a critical gap in antimicrobial research, potentially accelerating the development of effective agents against Gram-negative pathogens.</p>","PeriodicalId":72407,"journal":{"name":"bioRxiv : the preprint server for biology","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11870406/pdf/","citationCount":"0","resultStr":"{\"title\":\"Click-Based Determination of Accumulation of Molecules in <i>Escherichia coli</i>.\",\"authors\":\"George M Ongwae, Zichen Liu, Shasha Feng, Mahendra D Chordia, Mohammad Sharifian Gh, Rachita Dash, Brianna E Dalesandro, Taijie Guo, Karl Barry Sharpless, Jiajia Dong, M Sloan Siegrist, Wonpil Im, Marcos M Pires\",\"doi\":\"10.1101/2023.06.20.545103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Gram-negative bacterial pathogens pose a significant challenge in drug development due to their outer membranes, which impede the permeation of small molecules. The lack of widely adoptable methods to measure the cytosolic accumulation of compounds in bacterial cells has hindered drug discovery efforts. To address this challenge, we developed the CHloroalkane Azide Membrane Permeability (CHAMP) assay, specifically designed to assess molecule accumulation in the cytosol of Gram-negative bacteria. The CHAMP analysis utilizes biorthogonal epitopes anchored within HaloTag-expressing bacteria and measures the cytosolic arrival of azide-bearing test molecules through strain-promoted azide-alkyne cycloaddition. This workflow allows for robust and rapid accumulation measurements of thousands of azide-tagged small molecules. Our approach consistently yields a large number of accumulation profiles, significantly exceeding the scale of previous measurements in <i>Escherichia coli</i> ( <i>E. coli</i> ). We have validated the CHAMP assay across various chemical and biological contexts, including hyperporinated cells, membrane-permeabilized cells, and E. coli strains with impaired TolC function, a key component of the efflux pump. The CHAMP platform provides a simple, high-throughput, and accessible method that enables the analysis of over 1,000 molecules within hours. This technique addresses a critical gap in antimicrobial research, potentially accelerating the development of effective agents against Gram-negative pathogens.</p>\",\"PeriodicalId\":72407,\"journal\":{\"name\":\"bioRxiv : the preprint server for biology\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-02-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11870406/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"bioRxiv : the preprint server for biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2023.06.20.545103\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv : the preprint server for biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2023.06.20.545103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Click-Based Determination of Accumulation of Molecules in Escherichia coli.
Gram-negative bacterial pathogens pose a significant challenge in drug development due to their outer membranes, which impede the permeation of small molecules. The lack of widely adoptable methods to measure the cytosolic accumulation of compounds in bacterial cells has hindered drug discovery efforts. To address this challenge, we developed the CHloroalkane Azide Membrane Permeability (CHAMP) assay, specifically designed to assess molecule accumulation in the cytosol of Gram-negative bacteria. The CHAMP analysis utilizes biorthogonal epitopes anchored within HaloTag-expressing bacteria and measures the cytosolic arrival of azide-bearing test molecules through strain-promoted azide-alkyne cycloaddition. This workflow allows for robust and rapid accumulation measurements of thousands of azide-tagged small molecules. Our approach consistently yields a large number of accumulation profiles, significantly exceeding the scale of previous measurements in Escherichia coli ( E. coli ). We have validated the CHAMP assay across various chemical and biological contexts, including hyperporinated cells, membrane-permeabilized cells, and E. coli strains with impaired TolC function, a key component of the efflux pump. The CHAMP platform provides a simple, high-throughput, and accessible method that enables the analysis of over 1,000 molecules within hours. This technique addresses a critical gap in antimicrobial research, potentially accelerating the development of effective agents against Gram-negative pathogens.