基于模块化神经网络模型的胎儿状态分类

S. Jadhav, S. Nalbalwar, A. Ghatol
{"title":"基于模块化神经网络模型的胎儿状态分类","authors":"S. Jadhav, S. Nalbalwar, A. Ghatol","doi":"10.1109/BIBMW.2011.6112501","DOIUrl":null,"url":null,"abstract":"Cardiotocography (CTG) is a simultaneous recording of foetal heart rate (FHR) and uterine contractions (UC) and it is one of the most common diagnostic techniques to evaluate maternal and foetal well-being during pregnancy and before delivery. Assessment of the foetal state can be verified only after delivery using the foetal (newborn) outcome data. One of the most important features defining the abnormal foetal outcome is low birth weight. This paper proposes a multi-class classification algorithm using Modular neural network (MNN) models. It tries to boost two conflicting main objectives of multi-class classifiers: a high correct classification rate level and a high classification rate for each class. Using a Cardiotocography database of normal, suspect and pathological cases, we trained MNN classifiers with 23 real valued diagnostic features collected from total 2126 foetal CTG signal recordings data from UCI Machine Learning Repository. We used the classification in a detection process. The proposed methodology is presented, which then is tested on UCI Cardiotocography unseen testing data sets. Experimental results are promising paving the way for further research in that direction.","PeriodicalId":6345,"journal":{"name":"2011 IEEE International Conference on Bioinformatics and Biomedicine Workshops (BIBMW)","volume":"5 1","pages":"915-917"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"Modular neural network model based foetal state classification\",\"authors\":\"S. Jadhav, S. Nalbalwar, A. Ghatol\",\"doi\":\"10.1109/BIBMW.2011.6112501\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cardiotocography (CTG) is a simultaneous recording of foetal heart rate (FHR) and uterine contractions (UC) and it is one of the most common diagnostic techniques to evaluate maternal and foetal well-being during pregnancy and before delivery. Assessment of the foetal state can be verified only after delivery using the foetal (newborn) outcome data. One of the most important features defining the abnormal foetal outcome is low birth weight. This paper proposes a multi-class classification algorithm using Modular neural network (MNN) models. It tries to boost two conflicting main objectives of multi-class classifiers: a high correct classification rate level and a high classification rate for each class. Using a Cardiotocography database of normal, suspect and pathological cases, we trained MNN classifiers with 23 real valued diagnostic features collected from total 2126 foetal CTG signal recordings data from UCI Machine Learning Repository. We used the classification in a detection process. The proposed methodology is presented, which then is tested on UCI Cardiotocography unseen testing data sets. Experimental results are promising paving the way for further research in that direction.\",\"PeriodicalId\":6345,\"journal\":{\"name\":\"2011 IEEE International Conference on Bioinformatics and Biomedicine Workshops (BIBMW)\",\"volume\":\"5 1\",\"pages\":\"915-917\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE International Conference on Bioinformatics and Biomedicine Workshops (BIBMW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIBMW.2011.6112501\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Conference on Bioinformatics and Biomedicine Workshops (BIBMW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBMW.2011.6112501","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

摘要

心脏造影(CTG)是一种同时记录胎儿心率(FHR)和子宫收缩(UC)的技术,是评估怀孕期间和分娩前母体和胎儿健康状况的最常用诊断技术之一。只有在分娩后使用胎儿(新生儿)结局数据才能对胎儿状态进行评估。定义异常胎儿结局的最重要特征之一是低出生体重。提出了一种基于模块化神经网络(MNN)模型的多类分类算法。它试图提高多类分类器的两个相互冲突的主要目标:高正确分类率水平和每个类的高分类率。使用正常、可疑和病理病例的心脏数据库,我们使用从UCI机器学习库中收集的2126个胎儿CTG信号记录数据中收集的23个真实价值诊断特征来训练MNN分类器。我们在检测过程中使用了分类。提出了该方法,然后在UCI心脏造影未见测试数据集上进行了测试。实验结果很有希望为这一方向的进一步研究铺平道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modular neural network model based foetal state classification
Cardiotocography (CTG) is a simultaneous recording of foetal heart rate (FHR) and uterine contractions (UC) and it is one of the most common diagnostic techniques to evaluate maternal and foetal well-being during pregnancy and before delivery. Assessment of the foetal state can be verified only after delivery using the foetal (newborn) outcome data. One of the most important features defining the abnormal foetal outcome is low birth weight. This paper proposes a multi-class classification algorithm using Modular neural network (MNN) models. It tries to boost two conflicting main objectives of multi-class classifiers: a high correct classification rate level and a high classification rate for each class. Using a Cardiotocography database of normal, suspect and pathological cases, we trained MNN classifiers with 23 real valued diagnostic features collected from total 2126 foetal CTG signal recordings data from UCI Machine Learning Repository. We used the classification in a detection process. The proposed methodology is presented, which then is tested on UCI Cardiotocography unseen testing data sets. Experimental results are promising paving the way for further research in that direction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信