{"title":"环5区对长链碱基转运体Rsb1的活性起重要作用","authors":"H. Makuta, K. Obara, A. Kihara","doi":"10.1093/jb/mvw059","DOIUrl":null,"url":null,"abstract":"Intracellular lipid amounts are regulated not only by metabolism but also by efflux. Yeast Rsb1 is the only known transporter/floppase of the sphingolipid components long-chain bases (LCBs). However, even fundamental knowledge about Rsb1, such as important amino acid residues for activity and substrate recognition, still remains unclear. Rsb1 belongs to the Rta1-like family. To date, it has not been determined whether all family members share a common ability to export LCBs. Here, we revealed that within the Rta1-like family, only Rsb1 suppressed the hypersensitivity of the mutant cells lacking LCB 1-phoshate-degrading enzymes, suggesting that LCB-exporting activity is specific to Rsb1. Rsb1 contains a characteristic region (loop 5), which does not exist in other proteins of the Rta1-like family. We found that deletion of this region caused loss of Rsb1 function. Further mutational analysis of loop 5 revealed that the charged amino acid residues E223, D225 and R236 were important for Rsb1 activity. In addition to LCBs, Rsb1 facilitated the export of 1-hexadecanol, but not palmitic acid, which suggests that Rsb1 recognizes the C1 hydroxyl group. Thus, our findings provide an important clue for understanding the molecular mechanism of LCB export.","PeriodicalId":22605,"journal":{"name":"The Journal of Biochemistry","volume":"58 1","pages":"207–213"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Loop 5 region is important for the activity of the long-chain base transporter Rsb1\",\"authors\":\"H. Makuta, K. Obara, A. Kihara\",\"doi\":\"10.1093/jb/mvw059\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Intracellular lipid amounts are regulated not only by metabolism but also by efflux. Yeast Rsb1 is the only known transporter/floppase of the sphingolipid components long-chain bases (LCBs). However, even fundamental knowledge about Rsb1, such as important amino acid residues for activity and substrate recognition, still remains unclear. Rsb1 belongs to the Rta1-like family. To date, it has not been determined whether all family members share a common ability to export LCBs. Here, we revealed that within the Rta1-like family, only Rsb1 suppressed the hypersensitivity of the mutant cells lacking LCB 1-phoshate-degrading enzymes, suggesting that LCB-exporting activity is specific to Rsb1. Rsb1 contains a characteristic region (loop 5), which does not exist in other proteins of the Rta1-like family. We found that deletion of this region caused loss of Rsb1 function. Further mutational analysis of loop 5 revealed that the charged amino acid residues E223, D225 and R236 were important for Rsb1 activity. In addition to LCBs, Rsb1 facilitated the export of 1-hexadecanol, but not palmitic acid, which suggests that Rsb1 recognizes the C1 hydroxyl group. Thus, our findings provide an important clue for understanding the molecular mechanism of LCB export.\",\"PeriodicalId\":22605,\"journal\":{\"name\":\"The Journal of Biochemistry\",\"volume\":\"58 1\",\"pages\":\"207–213\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Biochemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/jb/mvw059\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Biochemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/jb/mvw059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Loop 5 region is important for the activity of the long-chain base transporter Rsb1
Intracellular lipid amounts are regulated not only by metabolism but also by efflux. Yeast Rsb1 is the only known transporter/floppase of the sphingolipid components long-chain bases (LCBs). However, even fundamental knowledge about Rsb1, such as important amino acid residues for activity and substrate recognition, still remains unclear. Rsb1 belongs to the Rta1-like family. To date, it has not been determined whether all family members share a common ability to export LCBs. Here, we revealed that within the Rta1-like family, only Rsb1 suppressed the hypersensitivity of the mutant cells lacking LCB 1-phoshate-degrading enzymes, suggesting that LCB-exporting activity is specific to Rsb1. Rsb1 contains a characteristic region (loop 5), which does not exist in other proteins of the Rta1-like family. We found that deletion of this region caused loss of Rsb1 function. Further mutational analysis of loop 5 revealed that the charged amino acid residues E223, D225 and R236 were important for Rsb1 activity. In addition to LCBs, Rsb1 facilitated the export of 1-hexadecanol, but not palmitic acid, which suggests that Rsb1 recognizes the C1 hydroxyl group. Thus, our findings provide an important clue for understanding the molecular mechanism of LCB export.