协处理器环境中的流水线查询处理

Henning Funke, S. Breß, Stefan Noll, V. Markl, J. Teubner
{"title":"协处理器环境中的流水线查询处理","authors":"Henning Funke, S. Breß, Stefan Noll, V. Markl, J. Teubner","doi":"10.1145/3183713.3183734","DOIUrl":null,"url":null,"abstract":"Query processing on GPU-style coprocessors is severely limited by the movement of data. With teraflops of compute throughput in one device, even high-bandwidth memory cannot provision enough data for a reasonable utilization. Query compilation is a proven technique to improve memory efficiency. However, its inherent tuple-at-a-time processing style does not suit the massively parallel execution model of GPU-style coprocessors. This compromises the improvements in efficiency offered by query compilation. In this paper, we show how query compilation and GPU-style parallelism can be made to play in unison nevertheless. We describe a compiler strategy that merges multiple operations into a single GPU kernel, thereby significantly reducing bandwidth demand. Compared to operator-at-a-time, we show reductions of memory access volumes by factors of up to 7.5x resulting in shorter kernel execution times by factors of up to 9.5x.","PeriodicalId":20430,"journal":{"name":"Proceedings of the 2018 International Conference on Management of Data","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"75","resultStr":"{\"title\":\"Pipelined Query Processing in Coprocessor Environments\",\"authors\":\"Henning Funke, S. Breß, Stefan Noll, V. Markl, J. Teubner\",\"doi\":\"10.1145/3183713.3183734\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Query processing on GPU-style coprocessors is severely limited by the movement of data. With teraflops of compute throughput in one device, even high-bandwidth memory cannot provision enough data for a reasonable utilization. Query compilation is a proven technique to improve memory efficiency. However, its inherent tuple-at-a-time processing style does not suit the massively parallel execution model of GPU-style coprocessors. This compromises the improvements in efficiency offered by query compilation. In this paper, we show how query compilation and GPU-style parallelism can be made to play in unison nevertheless. We describe a compiler strategy that merges multiple operations into a single GPU kernel, thereby significantly reducing bandwidth demand. Compared to operator-at-a-time, we show reductions of memory access volumes by factors of up to 7.5x resulting in shorter kernel execution times by factors of up to 9.5x.\",\"PeriodicalId\":20430,\"journal\":{\"name\":\"Proceedings of the 2018 International Conference on Management of Data\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"75\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2018 International Conference on Management of Data\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3183713.3183734\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2018 International Conference on Management of Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3183713.3183734","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 75

摘要

gpu样式的协处理器上的查询处理受到数据移动的严重限制。如果一台设备的计算吞吐量达到每秒万亿次,那么即使是高带宽内存也无法提供足够的数据以实现合理的利用。查询编译是一种经过验证的提高内存效率的技术。然而,其固有的一次元组处理风格并不适合gpu风格的协处理器的大规模并行执行模型。这损害了查询编译提供的效率改进。在本文中,我们展示了如何使查询编译和gpu风格的并行性同时发挥作用。我们描述了一种编译器策略,该策略将多个操作合并到单个GPU内核中,从而显着降低带宽需求。与每次操作符相比,我们发现内存访问量减少了7.5倍,内核执行时间缩短了9.5倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pipelined Query Processing in Coprocessor Environments
Query processing on GPU-style coprocessors is severely limited by the movement of data. With teraflops of compute throughput in one device, even high-bandwidth memory cannot provision enough data for a reasonable utilization. Query compilation is a proven technique to improve memory efficiency. However, its inherent tuple-at-a-time processing style does not suit the massively parallel execution model of GPU-style coprocessors. This compromises the improvements in efficiency offered by query compilation. In this paper, we show how query compilation and GPU-style parallelism can be made to play in unison nevertheless. We describe a compiler strategy that merges multiple operations into a single GPU kernel, thereby significantly reducing bandwidth demand. Compared to operator-at-a-time, we show reductions of memory access volumes by factors of up to 7.5x resulting in shorter kernel execution times by factors of up to 9.5x.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信