活塞在半无限通道中流动

Vyacheslav V. Meleshko , Tatyana S. Krasnopolskaya
{"title":"活塞在半无限通道中流动","authors":"Vyacheslav V. Meleshko ,&nbsp;Tatyana S. Krasnopolskaya","doi":"10.1016/S1620-7742(01)01355-1","DOIUrl":null,"url":null,"abstract":"<div><p>We consider a Stokes flow of a viscous incompressible fluid in a semi-infinite two-dimensional channel <span><math><mtext>x&gt;0</mtext></math></span>, <span><math><mtext>−1&lt;y&lt;1</mtext></math></span> with rigid walls <span><math><mtext>y=±1</mtext></math></span> and a prescribed uniform normal velocity at the end <span><math><mtext>x=0</mtext></math></span>. Recently, Katopodes, Davis and Stone have used the biorthogonal eigenfunctions expansion to construct the solution of that syringe flow. It is an analytical solution, but details of the asymptotic behaviour of the coefficients in the complex series remain unclear. We construct the analytical solution by means of the method of superposition. This solution allows us both to analytically describe the local Goodier–Taylor scraper flow and to establish the asymptotic properties of the coefficients in the eigenfunctions expansions. Knowledge of these non-decaying coeffiicents is essential for a discussion of a pointwise convergence of the non-orthogonal complex series.</p></div>","PeriodicalId":100302,"journal":{"name":"Comptes Rendus de l'Académie des Sciences - Series IIB - Mechanics","volume":"329 6","pages":"Pages 451-456"},"PeriodicalIF":0.0000,"publicationDate":"2001-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1620-7742(01)01355-1","citationCount":"5","resultStr":"{\"title\":\"Piston Stokes flow in a semi-infinite channel\",\"authors\":\"Vyacheslav V. Meleshko ,&nbsp;Tatyana S. Krasnopolskaya\",\"doi\":\"10.1016/S1620-7742(01)01355-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We consider a Stokes flow of a viscous incompressible fluid in a semi-infinite two-dimensional channel <span><math><mtext>x&gt;0</mtext></math></span>, <span><math><mtext>−1&lt;y&lt;1</mtext></math></span> with rigid walls <span><math><mtext>y=±1</mtext></math></span> and a prescribed uniform normal velocity at the end <span><math><mtext>x=0</mtext></math></span>. Recently, Katopodes, Davis and Stone have used the biorthogonal eigenfunctions expansion to construct the solution of that syringe flow. It is an analytical solution, but details of the asymptotic behaviour of the coefficients in the complex series remain unclear. We construct the analytical solution by means of the method of superposition. This solution allows us both to analytically describe the local Goodier–Taylor scraper flow and to establish the asymptotic properties of the coefficients in the eigenfunctions expansions. Knowledge of these non-decaying coeffiicents is essential for a discussion of a pointwise convergence of the non-orthogonal complex series.</p></div>\",\"PeriodicalId\":100302,\"journal\":{\"name\":\"Comptes Rendus de l'Académie des Sciences - Series IIB - Mechanics\",\"volume\":\"329 6\",\"pages\":\"Pages 451-456\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S1620-7742(01)01355-1\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comptes Rendus de l'Académie des Sciences - Series IIB - Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1620774201013551\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comptes Rendus de l'Académie des Sciences - Series IIB - Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1620774201013551","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

我们考虑一种粘性不可压缩流体在半无限二维通道x>0, - 1<y<1中的斯托克斯流动,其刚性壁面y=±1,末端规定匀速法向速度x=0。最近,Katopodes, Davis和Stone使用双正交特征函数展开来构造该注射器流的解。这是一个解析解,但是复级数中系数的渐近行为的细节仍然不清楚。我们用叠加法构造了解析解。该解允许我们解析地描述局部Goodier-Taylor刮刀流,并建立特征函数展开式中系数的渐近性质。这些非衰减系数的知识对于讨论非正交复级数的点向收敛是必要的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Piston Stokes flow in a semi-infinite channel

We consider a Stokes flow of a viscous incompressible fluid in a semi-infinite two-dimensional channel x>0, −1<y<1 with rigid walls y=±1 and a prescribed uniform normal velocity at the end x=0. Recently, Katopodes, Davis and Stone have used the biorthogonal eigenfunctions expansion to construct the solution of that syringe flow. It is an analytical solution, but details of the asymptotic behaviour of the coefficients in the complex series remain unclear. We construct the analytical solution by means of the method of superposition. This solution allows us both to analytically describe the local Goodier–Taylor scraper flow and to establish the asymptotic properties of the coefficients in the eigenfunctions expansions. Knowledge of these non-decaying coeffiicents is essential for a discussion of a pointwise convergence of the non-orthogonal complex series.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信