具有相关观测过程的混合面板计数数据的回归分析

IF 0.8 4区 数学 Q3 STATISTICS & PROBABILITY
Lei Ge, Jai H. Choi, Hui Zhao, Yang Li, Jianguo Sun
{"title":"具有相关观测过程的混合面板计数数据的回归分析","authors":"Lei Ge, Jai H. Choi, Hui Zhao, Yang Li, Jianguo Sun","doi":"10.1080/10485252.2023.2203275","DOIUrl":null,"url":null,"abstract":"Event history data commonly occur in many areas and a great deal of literature on their analysis has been established. However, most of the existing methods apply only to a single type of event history data. Recently, several authors have discussed the analysis of mixed types of event history data and the existence of dependent observation processes is another issue that one often has to deal with in the analysis of event history data. This paper discusses regression analysis of mixed panel count data with dependent observation processes, which has not been addressed in the literature, and for the problem, an approximate likelihood estimation approach is proposed. For the implementation, an EM algorithm is developed and the proposed estimators are shown to be consistent and asymptotically normal. An extensive simulation study is performed to assess the performance of the proposed approach and indicates that it works well in practical situations. An application to a set of real data is provided.","PeriodicalId":50112,"journal":{"name":"Journal of Nonparametric Statistics","volume":"58 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Regression analysis of mixed panel count data with dependent observation processes\",\"authors\":\"Lei Ge, Jai H. Choi, Hui Zhao, Yang Li, Jianguo Sun\",\"doi\":\"10.1080/10485252.2023.2203275\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Event history data commonly occur in many areas and a great deal of literature on their analysis has been established. However, most of the existing methods apply only to a single type of event history data. Recently, several authors have discussed the analysis of mixed types of event history data and the existence of dependent observation processes is another issue that one often has to deal with in the analysis of event history data. This paper discusses regression analysis of mixed panel count data with dependent observation processes, which has not been addressed in the literature, and for the problem, an approximate likelihood estimation approach is proposed. For the implementation, an EM algorithm is developed and the proposed estimators are shown to be consistent and asymptotically normal. An extensive simulation study is performed to assess the performance of the proposed approach and indicates that it works well in practical situations. An application to a set of real data is provided.\",\"PeriodicalId\":50112,\"journal\":{\"name\":\"Journal of Nonparametric Statistics\",\"volume\":\"58 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nonparametric Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/10485252.2023.2203275\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nonparametric Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/10485252.2023.2203275","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Regression analysis of mixed panel count data with dependent observation processes
Event history data commonly occur in many areas and a great deal of literature on their analysis has been established. However, most of the existing methods apply only to a single type of event history data. Recently, several authors have discussed the analysis of mixed types of event history data and the existence of dependent observation processes is another issue that one often has to deal with in the analysis of event history data. This paper discusses regression analysis of mixed panel count data with dependent observation processes, which has not been addressed in the literature, and for the problem, an approximate likelihood estimation approach is proposed. For the implementation, an EM algorithm is developed and the proposed estimators are shown to be consistent and asymptotically normal. An extensive simulation study is performed to assess the performance of the proposed approach and indicates that it works well in practical situations. An application to a set of real data is provided.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Nonparametric Statistics
Journal of Nonparametric Statistics 数学-统计学与概率论
CiteScore
1.50
自引率
8.30%
发文量
42
审稿时长
6-12 weeks
期刊介绍: Journal of Nonparametric Statistics provides a medium for the publication of research and survey work in nonparametric statistics and related areas. The scope includes, but is not limited to the following topics: Nonparametric modeling, Nonparametric function estimation, Rank and other robust and distribution-free procedures, Resampling methods, Lack-of-fit testing, Multivariate analysis, Inference with high-dimensional data, Dimension reduction and variable selection, Methods for errors in variables, missing, censored, and other incomplete data structures, Inference of stochastic processes, Sample surveys, Time series analysis, Longitudinal and functional data analysis, Nonparametric Bayes methods and decision procedures, Semiparametric models and procedures, Statistical methods for imaging and tomography, Statistical inverse problems, Financial statistics and econometrics, Bioinformatics and comparative genomics, Statistical algorithms and machine learning. Both the theory and applications of nonparametric statistics are covered in the journal. Research applying nonparametric methods to medicine, engineering, technology, science and humanities is welcomed, provided the novelty and quality level are of the highest order. Authors are encouraged to submit supplementary technical arguments, computer code, data analysed in the paper or any additional information for online publication along with the published paper.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信