{"title":"基于混合变换的医学图像去噪","authors":"J. S. Jameel","doi":"10.29196/jub.v26i4.804","DOIUrl":null,"url":null,"abstract":"In this paper, a mixed transform method is proposed based on a combination of wavelet transform (WT) and multiwavelet transform (MWT) in order to denoise medical images. The proposed method consists of WT and MWT in cascade form to enhance the denoising performance of image processing. Practically, the first step is to add a noise to Magnetic Resonance Image (MRI) or Computed Tomography (CT) images for the sake of testing. The noisy image is processed by WT to achieve four sub-bands and each sub-band is treated individually using MWT before the soft/hard denoising stage. Simulation results show that a high peak signal to noise ratio (PSNR) is improved significantly and the characteristic features are well preserved by employing mixed transform of WT and MWT due to their capability of separating noise signals from image signals. Moreover, the corresponding mean square error (MSE) is decreased accordingly compared to other available methods.","PeriodicalId":17505,"journal":{"name":"Journal of University of Babylon","volume":"36 1","pages":"272-281"},"PeriodicalIF":0.0000,"publicationDate":"2018-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Medical Image Denoising Using Mixed Transforms\",\"authors\":\"J. S. Jameel\",\"doi\":\"10.29196/jub.v26i4.804\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a mixed transform method is proposed based on a combination of wavelet transform (WT) and multiwavelet transform (MWT) in order to denoise medical images. The proposed method consists of WT and MWT in cascade form to enhance the denoising performance of image processing. Practically, the first step is to add a noise to Magnetic Resonance Image (MRI) or Computed Tomography (CT) images for the sake of testing. The noisy image is processed by WT to achieve four sub-bands and each sub-band is treated individually using MWT before the soft/hard denoising stage. Simulation results show that a high peak signal to noise ratio (PSNR) is improved significantly and the characteristic features are well preserved by employing mixed transform of WT and MWT due to their capability of separating noise signals from image signals. Moreover, the corresponding mean square error (MSE) is decreased accordingly compared to other available methods.\",\"PeriodicalId\":17505,\"journal\":{\"name\":\"Journal of University of Babylon\",\"volume\":\"36 1\",\"pages\":\"272-281\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of University of Babylon\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29196/jub.v26i4.804\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of University of Babylon","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29196/jub.v26i4.804","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In this paper, a mixed transform method is proposed based on a combination of wavelet transform (WT) and multiwavelet transform (MWT) in order to denoise medical images. The proposed method consists of WT and MWT in cascade form to enhance the denoising performance of image processing. Practically, the first step is to add a noise to Magnetic Resonance Image (MRI) or Computed Tomography (CT) images for the sake of testing. The noisy image is processed by WT to achieve four sub-bands and each sub-band is treated individually using MWT before the soft/hard denoising stage. Simulation results show that a high peak signal to noise ratio (PSNR) is improved significantly and the characteristic features are well preserved by employing mixed transform of WT and MWT due to their capability of separating noise signals from image signals. Moreover, the corresponding mean square error (MSE) is decreased accordingly compared to other available methods.