F. Timmes, Chris L. Fryer, A. Hungerford, A. Couture, F. Adams, W. Aoki, A. Arcones, W. Arnett, K. Auchettl, M. Avila, C. Badenes, E. Baron, A. Bauswein, J. Beacom, J. Blackmon, S. Blondin, P. Bloser, S. Boggs, A. Boss, T. Brandt, E. Bravo, E. Brown, P. Brown, S. Bruenn, C. Budtz-Jørgensen, E. Burns, A. Calder, R. Caputo, A. Champagne, R. Chevalier, A. Chieffi, K. Chipps, D. Cinabro, O. Clarkson, D. Clayton, A. Coc, D. Connolly, C. Conroy, B. Côté, S. Couch, N. Dauphas, R. deBoer, C. Deibel, P. Denisenkov, S. Desch, L. Dessart, R. Diehl, C. Doherty, I. Domínguez, S. Dong, V. Dwarkadas, Doreen Fan, B. Fields, C. Fields, A. Filippenko, R. Fisher, F. Foucart, C. Fransson, C. Fröhlich, G. Fuller, B. Gibson, Viktoriya Giryanskaya, J. Görres, S. Goriely, S. Grebenev, B. Grefenstette, E. Grohs, J. Guillochon, A. Harpole, C. Harris, J. A. Harris, F. Harrison, D. Hartmann, M. Hashimoto, A. Heger, M. Hernanz, F. Herwig, R. Hirschi, R. Hix, P. Höflich, R. Hoffman, Cole Holcomb, E. Hsiao, C. Iliadis, A. Janiuk, T. Ja
{"title":"在行动中捕捉元素的形成——一个新的MeV伽马射线任务的案例:21世纪20年代的放射性核素天文学","authors":"F. Timmes, Chris L. Fryer, A. Hungerford, A. Couture, F. Adams, W. Aoki, A. Arcones, W. Arnett, K. Auchettl, M. Avila, C. Badenes, E. Baron, A. Bauswein, J. Beacom, J. Blackmon, S. Blondin, P. Bloser, S. Boggs, A. Boss, T. Brandt, E. Bravo, E. Brown, P. Brown, S. Bruenn, C. Budtz-Jørgensen, E. Burns, A. Calder, R. Caputo, A. Champagne, R. Chevalier, A. Chieffi, K. Chipps, D. Cinabro, O. Clarkson, D. Clayton, A. Coc, D. Connolly, C. Conroy, B. Côté, S. Couch, N. Dauphas, R. deBoer, C. Deibel, P. Denisenkov, S. Desch, L. Dessart, R. Diehl, C. Doherty, I. Domínguez, S. Dong, V. Dwarkadas, Doreen Fan, B. Fields, C. Fields, A. Filippenko, R. Fisher, F. Foucart, C. Fransson, C. Fröhlich, G. Fuller, B. Gibson, Viktoriya Giryanskaya, J. Görres, S. Goriely, S. Grebenev, B. Grefenstette, E. Grohs, J. Guillochon, A. Harpole, C. Harris, J. A. Harris, F. Harrison, D. Hartmann, M. Hashimoto, A. Heger, M. Hernanz, F. Herwig, R. Hirschi, R. Hix, P. Höflich, R. Hoffman, Cole Holcomb, E. Hsiao, C. Iliadis, A. Janiuk, T. Ja","doi":"10.2172/1498895","DOIUrl":null,"url":null,"abstract":"Gamma-ray astronomy explores the most energetic photons in nature to address some of the most pressing puzzles in contemporary astrophysics. It encompasses a wide range of objects and phenomena: stars, supernovae, novae, neutron stars, stellar-mass black holes, nucleosynthesis, the interstellar medium, cosmic rays and relativistic-particle acceleration, and the evolution of galaxies. MeV gamma-rays provide a unique probe of nuclear processes in astronomy, directly measuring radioactive decay, nuclear de-excitation, and positron annihilation. The substantial information carried by gamma-ray photons allows us to see deeper into these objects, the bulk of the power is often emitted at gamma-ray energies, and radioactivity provides a natural physical clock that adds unique information. New science will be driven by time-domain population studies at gamma-ray energies. This science is enabled by next-generation gamma-ray instruments with one to two orders of magnitude better sensitivity, larger sky coverage, and faster cadence than all previous gamma-ray instruments. This transformative capability permits: (a) the accurate identification of the gamma-ray emitting objects and correlations with observations taken at other wavelengths and with other messengers; (b) construction of new gamma-ray maps of the Milky Way and other nearby galaxies where extended regions are distinguished from point sources; and (c) considerable serendipitous science of scarce events -- nearby neutron star mergers, for example. Advances in technology push the performance of new gamma-ray instruments to address a wide set of astrophysical questions.","PeriodicalId":9423,"journal":{"name":"Bulletin of the American Astronomical Society","volume":"438 1","pages":"2"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Catching Element Formation In The Act - The Case for a New MeV Gamma-Ray Mission: Radionuclide Astronomy in the 2020s\",\"authors\":\"F. Timmes, Chris L. Fryer, A. Hungerford, A. Couture, F. Adams, W. Aoki, A. Arcones, W. Arnett, K. Auchettl, M. Avila, C. Badenes, E. Baron, A. Bauswein, J. Beacom, J. Blackmon, S. Blondin, P. Bloser, S. Boggs, A. Boss, T. Brandt, E. Bravo, E. Brown, P. Brown, S. Bruenn, C. Budtz-Jørgensen, E. Burns, A. Calder, R. Caputo, A. Champagne, R. Chevalier, A. Chieffi, K. Chipps, D. Cinabro, O. Clarkson, D. Clayton, A. Coc, D. Connolly, C. Conroy, B. Côté, S. Couch, N. Dauphas, R. deBoer, C. Deibel, P. Denisenkov, S. Desch, L. Dessart, R. Diehl, C. Doherty, I. Domínguez, S. Dong, V. Dwarkadas, Doreen Fan, B. Fields, C. Fields, A. Filippenko, R. Fisher, F. Foucart, C. Fransson, C. Fröhlich, G. Fuller, B. Gibson, Viktoriya Giryanskaya, J. Görres, S. Goriely, S. Grebenev, B. Grefenstette, E. Grohs, J. Guillochon, A. Harpole, C. Harris, J. A. Harris, F. Harrison, D. Hartmann, M. Hashimoto, A. Heger, M. Hernanz, F. Herwig, R. Hirschi, R. Hix, P. Höflich, R. Hoffman, Cole Holcomb, E. Hsiao, C. Iliadis, A. Janiuk, T. Ja\",\"doi\":\"10.2172/1498895\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Gamma-ray astronomy explores the most energetic photons in nature to address some of the most pressing puzzles in contemporary astrophysics. It encompasses a wide range of objects and phenomena: stars, supernovae, novae, neutron stars, stellar-mass black holes, nucleosynthesis, the interstellar medium, cosmic rays and relativistic-particle acceleration, and the evolution of galaxies. MeV gamma-rays provide a unique probe of nuclear processes in astronomy, directly measuring radioactive decay, nuclear de-excitation, and positron annihilation. The substantial information carried by gamma-ray photons allows us to see deeper into these objects, the bulk of the power is often emitted at gamma-ray energies, and radioactivity provides a natural physical clock that adds unique information. New science will be driven by time-domain population studies at gamma-ray energies. This science is enabled by next-generation gamma-ray instruments with one to two orders of magnitude better sensitivity, larger sky coverage, and faster cadence than all previous gamma-ray instruments. This transformative capability permits: (a) the accurate identification of the gamma-ray emitting objects and correlations with observations taken at other wavelengths and with other messengers; (b) construction of new gamma-ray maps of the Milky Way and other nearby galaxies where extended regions are distinguished from point sources; and (c) considerable serendipitous science of scarce events -- nearby neutron star mergers, for example. Advances in technology push the performance of new gamma-ray instruments to address a wide set of astrophysical questions.\",\"PeriodicalId\":9423,\"journal\":{\"name\":\"Bulletin of the American Astronomical Society\",\"volume\":\"438 1\",\"pages\":\"2\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-02-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the American Astronomical Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2172/1498895\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the American Astronomical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2172/1498895","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Catching Element Formation In The Act - The Case for a New MeV Gamma-Ray Mission: Radionuclide Astronomy in the 2020s
Gamma-ray astronomy explores the most energetic photons in nature to address some of the most pressing puzzles in contemporary astrophysics. It encompasses a wide range of objects and phenomena: stars, supernovae, novae, neutron stars, stellar-mass black holes, nucleosynthesis, the interstellar medium, cosmic rays and relativistic-particle acceleration, and the evolution of galaxies. MeV gamma-rays provide a unique probe of nuclear processes in astronomy, directly measuring radioactive decay, nuclear de-excitation, and positron annihilation. The substantial information carried by gamma-ray photons allows us to see deeper into these objects, the bulk of the power is often emitted at gamma-ray energies, and radioactivity provides a natural physical clock that adds unique information. New science will be driven by time-domain population studies at gamma-ray energies. This science is enabled by next-generation gamma-ray instruments with one to two orders of magnitude better sensitivity, larger sky coverage, and faster cadence than all previous gamma-ray instruments. This transformative capability permits: (a) the accurate identification of the gamma-ray emitting objects and correlations with observations taken at other wavelengths and with other messengers; (b) construction of new gamma-ray maps of the Milky Way and other nearby galaxies where extended regions are distinguished from point sources; and (c) considerable serendipitous science of scarce events -- nearby neutron star mergers, for example. Advances in technology push the performance of new gamma-ray instruments to address a wide set of astrophysical questions.