基于散射机制的NbCoGe热电性质第一性原理研究

IF 1.5 4区 材料科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY
Yunji Shi, Rundong Wan, Zheng-gang Zhang, Ying Lei, G. Tian
{"title":"基于散射机制的NbCoGe热电性质第一性原理研究","authors":"Yunji Shi, Rundong Wan, Zheng-gang Zhang, Ying Lei, G. Tian","doi":"10.1080/14786435.2023.2203525","DOIUrl":null,"url":null,"abstract":"ABSTRACT Half-Heusler compounds have excellent power generation performance at high temperatures. The scattering mechanism is an essential factor affecting the electrical transport properties of thermoelectric materials. In computational simulations, only the role of acoustic phonon scattering on the thermoelectric properties of materials is considered, whereas other scattering mechanisms are neglected. In this work, we investigate the thermoelectric properties of NbCoGe compounds with different combinations of acoustic deformation potential, polar optical phonon, and ionised impurity scattering mechanisms. The calculated results show that the ZT values of n-type and p-type NbCoGe compounds reach 8 and 2.8, respectively, when only acoustic deformation potential scattering is considered, indicating that this sole scattering is insufficient. The calculated ZT values of p-type NbCoGe compounds reach 1.8 at 1200 K and more than 1 at 800 K for p- and n-type NbCoGe compounds under the combined effect of the three scattering mechanisms due to their high–power factor. This provides solid theoretical guidance for the search for potentially high–temperature half-Heusler thermoelectric materials.","PeriodicalId":19856,"journal":{"name":"Philosophical Magazine","volume":"80 1","pages":"1396 - 1410"},"PeriodicalIF":1.5000,"publicationDate":"2023-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"First-principles research on the thermoelectric properties of NbCoGe based on the scattering mechanisms\",\"authors\":\"Yunji Shi, Rundong Wan, Zheng-gang Zhang, Ying Lei, G. Tian\",\"doi\":\"10.1080/14786435.2023.2203525\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Half-Heusler compounds have excellent power generation performance at high temperatures. The scattering mechanism is an essential factor affecting the electrical transport properties of thermoelectric materials. In computational simulations, only the role of acoustic phonon scattering on the thermoelectric properties of materials is considered, whereas other scattering mechanisms are neglected. In this work, we investigate the thermoelectric properties of NbCoGe compounds with different combinations of acoustic deformation potential, polar optical phonon, and ionised impurity scattering mechanisms. The calculated results show that the ZT values of n-type and p-type NbCoGe compounds reach 8 and 2.8, respectively, when only acoustic deformation potential scattering is considered, indicating that this sole scattering is insufficient. The calculated ZT values of p-type NbCoGe compounds reach 1.8 at 1200 K and more than 1 at 800 K for p- and n-type NbCoGe compounds under the combined effect of the three scattering mechanisms due to their high–power factor. This provides solid theoretical guidance for the search for potentially high–temperature half-Heusler thermoelectric materials.\",\"PeriodicalId\":19856,\"journal\":{\"name\":\"Philosophical Magazine\",\"volume\":\"80 1\",\"pages\":\"1396 - 1410\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Philosophical Magazine\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1080/14786435.2023.2203525\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Philosophical Magazine","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/14786435.2023.2203525","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

半赫斯勒化合物具有优异的高温发电性能。散射机制是影响热电材料电输运性能的重要因素。在计算模拟中,只考虑了声子散射对材料热电性能的影响,而忽略了其他散射机制。在这项工作中,我们研究了具有不同声学变形势、极性光学声子和电离杂质散射机制组合的NbCoGe化合物的热电特性。计算结果表明,仅考虑声变形势散射时,n型和p型NbCoGe化合物的ZT值分别为8和2.8,说明单散射是不够的。在三种散射机制的共同作用下,p型NbCoGe化合物的ZT值在1200 K时达到1.8,在800 K时p型和n型NbCoGe化合物的ZT值大于1。这为寻找潜在高温半赫斯勒热电材料提供了坚实的理论指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
First-principles research on the thermoelectric properties of NbCoGe based on the scattering mechanisms
ABSTRACT Half-Heusler compounds have excellent power generation performance at high temperatures. The scattering mechanism is an essential factor affecting the electrical transport properties of thermoelectric materials. In computational simulations, only the role of acoustic phonon scattering on the thermoelectric properties of materials is considered, whereas other scattering mechanisms are neglected. In this work, we investigate the thermoelectric properties of NbCoGe compounds with different combinations of acoustic deformation potential, polar optical phonon, and ionised impurity scattering mechanisms. The calculated results show that the ZT values of n-type and p-type NbCoGe compounds reach 8 and 2.8, respectively, when only acoustic deformation potential scattering is considered, indicating that this sole scattering is insufficient. The calculated ZT values of p-type NbCoGe compounds reach 1.8 at 1200 K and more than 1 at 800 K for p- and n-type NbCoGe compounds under the combined effect of the three scattering mechanisms due to their high–power factor. This provides solid theoretical guidance for the search for potentially high–temperature half-Heusler thermoelectric materials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Philosophical Magazine
Philosophical Magazine 工程技术-材料科学:综合
自引率
0.00%
发文量
93
审稿时长
4.7 months
期刊介绍: The Editors of Philosophical Magazine consider for publication contributions describing original experimental and theoretical results, computational simulations and concepts relating to the structure and properties of condensed matter. The submission of papers on novel measurements, phases, phenomena, and new types of material is encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信