命名实体查询的主题建模

Xiaobing Xue, Xiaoxin Yin
{"title":"命名实体查询的主题建模","authors":"Xiaobing Xue, Xiaoxin Yin","doi":"10.1145/2063576.2063877","DOIUrl":null,"url":null,"abstract":"Named entities are observed in a large portion of web search queries (named entity queries), where each entity can be associated with many different query terms that refer to various aspects of this entity. Organizing these query terms into topics helps understand major search intents about entities and the discovered topics are useful for applications such as query suggestion. Furthermore, we notice that named entities can often be organized into categories and those from the same category share many generic topics. Therefore, working on a category of named entities instead of individual ones helps avoid the problems caused by the sparsity and noise in the data. In this paper, Named Entity Topic Model (NETM) is proposed to discover generic topics for a category of named entities, where the quality of the generic topics is improved through the model design and the parameter initialization. Experiments based on query log data show that NETM discovers high-quality topics and outperforms the state-of-the-art techniques by 12.8% based on F1 measure.","PeriodicalId":74507,"journal":{"name":"Proceedings of the ... ACM International Conference on Information & Knowledge Management. ACM International Conference on Information and Knowledge Management","volume":"19 Suppl 1 1","pages":"2009-2012"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Topic modeling for named entity queries\",\"authors\":\"Xiaobing Xue, Xiaoxin Yin\",\"doi\":\"10.1145/2063576.2063877\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Named entities are observed in a large portion of web search queries (named entity queries), where each entity can be associated with many different query terms that refer to various aspects of this entity. Organizing these query terms into topics helps understand major search intents about entities and the discovered topics are useful for applications such as query suggestion. Furthermore, we notice that named entities can often be organized into categories and those from the same category share many generic topics. Therefore, working on a category of named entities instead of individual ones helps avoid the problems caused by the sparsity and noise in the data. In this paper, Named Entity Topic Model (NETM) is proposed to discover generic topics for a category of named entities, where the quality of the generic topics is improved through the model design and the parameter initialization. Experiments based on query log data show that NETM discovers high-quality topics and outperforms the state-of-the-art techniques by 12.8% based on F1 measure.\",\"PeriodicalId\":74507,\"journal\":{\"name\":\"Proceedings of the ... ACM International Conference on Information & Knowledge Management. ACM International Conference on Information and Knowledge Management\",\"volume\":\"19 Suppl 1 1\",\"pages\":\"2009-2012\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ... ACM International Conference on Information & Knowledge Management. ACM International Conference on Information and Knowledge Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2063576.2063877\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... ACM International Conference on Information & Knowledge Management. ACM International Conference on Information and Knowledge Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2063576.2063877","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

在大部分web搜索查询(命名实体查询)中可以观察到命名实体,其中每个实体都可以与许多不同的查询术语相关联,这些查询术语指的是该实体的各个方面。将这些查询词组织成主题有助于理解实体的主要搜索意图,发现的主题对查询建议等应用程序很有用。此外,我们注意到命名实体通常可以组织成类别,来自同一类别的实体共享许多通用主题。因此,处理命名实体的类别而不是单个实体有助于避免由数据稀疏性和噪声引起的问题。本文提出了命名实体主题模型(NETM)来发现一类命名实体的通用主题,该模型通过模型设计和参数初始化来提高通用主题的质量。基于查询日志数据的实验表明,NETM发现了高质量的主题,并且基于F1度量比最先进的技术高出12.8%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Topic modeling for named entity queries
Named entities are observed in a large portion of web search queries (named entity queries), where each entity can be associated with many different query terms that refer to various aspects of this entity. Organizing these query terms into topics helps understand major search intents about entities and the discovered topics are useful for applications such as query suggestion. Furthermore, we notice that named entities can often be organized into categories and those from the same category share many generic topics. Therefore, working on a category of named entities instead of individual ones helps avoid the problems caused by the sparsity and noise in the data. In this paper, Named Entity Topic Model (NETM) is proposed to discover generic topics for a category of named entities, where the quality of the generic topics is improved through the model design and the parameter initialization. Experiments based on query log data show that NETM discovers high-quality topics and outperforms the state-of-the-art techniques by 12.8% based on F1 measure.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信