直升机“地面共振”的一致性及旋翼系统的不稳定横扭振动

Xin Qian, Yu Fan, Lin Li, Wenjun Wang
{"title":"直升机“地面共振”的一致性及旋翼系统的不稳定横扭振动","authors":"Xin Qian, Yu Fan, Lin Li, Wenjun Wang","doi":"10.1115/imece2021-70169","DOIUrl":null,"url":null,"abstract":"\n Ground resonance is a specific unstable vibration caused by the modal coupling between the blades and fuselage of a helicopter structural system. On the other hand, the unstable vibration in a standard rotor model can also be triggered by lateral-torsional coupling. This paper studies the consistency of instability mechanisms between the ground resonance and the lateral-torsional coupling vibration. Based on the two-dimensional equivalent model of helicopter system, the critical elements leading to the ground resonance are firstly studied by modal analysis. Comparison between the ground resonance and the lateral-torsional coupling vibration is then performed in two aspects: critical elements causing instability in dynamic matrices and modal shapes in the modal coupling ranges. Results demonstrate that the instability mechanism of the ground resonance is consistent with which of the lateral-torsional coupling vibration. The reason why similar instability does not occur in the general rotor system with elastic supports is also clarified.","PeriodicalId":23585,"journal":{"name":"Volume 7A: Dynamics, Vibration, and Control","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Consistency of Helicopter ‘Ground Resonance’ and the Unstable Lateral-Torsional Vibration in Standard Rotor Systems\",\"authors\":\"Xin Qian, Yu Fan, Lin Li, Wenjun Wang\",\"doi\":\"10.1115/imece2021-70169\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Ground resonance is a specific unstable vibration caused by the modal coupling between the blades and fuselage of a helicopter structural system. On the other hand, the unstable vibration in a standard rotor model can also be triggered by lateral-torsional coupling. This paper studies the consistency of instability mechanisms between the ground resonance and the lateral-torsional coupling vibration. Based on the two-dimensional equivalent model of helicopter system, the critical elements leading to the ground resonance are firstly studied by modal analysis. Comparison between the ground resonance and the lateral-torsional coupling vibration is then performed in two aspects: critical elements causing instability in dynamic matrices and modal shapes in the modal coupling ranges. Results demonstrate that the instability mechanism of the ground resonance is consistent with which of the lateral-torsional coupling vibration. The reason why similar instability does not occur in the general rotor system with elastic supports is also clarified.\",\"PeriodicalId\":23585,\"journal\":{\"name\":\"Volume 7A: Dynamics, Vibration, and Control\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 7A: Dynamics, Vibration, and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/imece2021-70169\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 7A: Dynamics, Vibration, and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece2021-70169","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

地面共振是直升机结构系统中由于叶片与机身之间的模态耦合而产生的一种特殊的不稳定振动。另一方面,标准转子模型的不稳定振动也可能由横扭耦合引起。本文研究了地面共振与侧扭耦合振动失稳机理的一致性。在直升机系统二维等效模型的基础上,通过模态分析研究了引起地面共振的关键因素。然后从引起动力矩阵失稳的关键因素和模态耦合范围内的模态振型两个方面对地面共振和横扭耦合振动进行了比较。结果表明,地基共振的失稳机理与侧扭耦合振动的失稳机理一致。阐明了一般弹性支承转子系统不发生类似失稳的原因。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Consistency of Helicopter ‘Ground Resonance’ and the Unstable Lateral-Torsional Vibration in Standard Rotor Systems
Ground resonance is a specific unstable vibration caused by the modal coupling between the blades and fuselage of a helicopter structural system. On the other hand, the unstable vibration in a standard rotor model can also be triggered by lateral-torsional coupling. This paper studies the consistency of instability mechanisms between the ground resonance and the lateral-torsional coupling vibration. Based on the two-dimensional equivalent model of helicopter system, the critical elements leading to the ground resonance are firstly studied by modal analysis. Comparison between the ground resonance and the lateral-torsional coupling vibration is then performed in two aspects: critical elements causing instability in dynamic matrices and modal shapes in the modal coupling ranges. Results demonstrate that the instability mechanism of the ground resonance is consistent with which of the lateral-torsional coupling vibration. The reason why similar instability does not occur in the general rotor system with elastic supports is also clarified.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信