带缺口的历史高度样本:一个计算方法

Markus Heintel
{"title":"带缺口的历史高度样本:一个计算方法","authors":"Markus Heintel","doi":"10.3366/HAC.1996.8.1.24","DOIUrl":null,"url":null,"abstract":"Research in economic history frequently uses human height as a proxy for net nutrition. This anthropometric method enables historians to measure time trends and differences in nutritional status. However, the most widely used data sources for historical heights, military mustering registers, cannot be regarded as random samples of the underlying population. The lower side of the otherwise normal distribution is eroded by a phenomenon called shortfall, because shorter individuals are under-represented below a certain threshold (truncation point). This paper reviews two widely used methods for analyzing historical height samples with shortfall - the Quantile Bend Estimator (QBE) and the Reduced Sample Maximum Likelihood Estimator (RSMLE). Because of the drawbacks of these procedures, a new computational approach for identifying the truncation point of height samples with shortfall, using density estimation techniques, is proposed and illustrated on an Austrian dataset. Finally, this procedure, combined with a truncated regression model, is compared to the QBE to estimate the mean and the standard deviation. The results demonstrate the deficiencies of the QBE again and cast a good light on the new method.","PeriodicalId":81446,"journal":{"name":"History & computing","volume":"44 1","pages":"24-37"},"PeriodicalIF":0.0000,"publicationDate":"1996-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Historical Height Samples with Shortfall: A Computational Approach\",\"authors\":\"Markus Heintel\",\"doi\":\"10.3366/HAC.1996.8.1.24\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Research in economic history frequently uses human height as a proxy for net nutrition. This anthropometric method enables historians to measure time trends and differences in nutritional status. However, the most widely used data sources for historical heights, military mustering registers, cannot be regarded as random samples of the underlying population. The lower side of the otherwise normal distribution is eroded by a phenomenon called shortfall, because shorter individuals are under-represented below a certain threshold (truncation point). This paper reviews two widely used methods for analyzing historical height samples with shortfall - the Quantile Bend Estimator (QBE) and the Reduced Sample Maximum Likelihood Estimator (RSMLE). Because of the drawbacks of these procedures, a new computational approach for identifying the truncation point of height samples with shortfall, using density estimation techniques, is proposed and illustrated on an Austrian dataset. Finally, this procedure, combined with a truncated regression model, is compared to the QBE to estimate the mean and the standard deviation. The results demonstrate the deficiencies of the QBE again and cast a good light on the new method.\",\"PeriodicalId\":81446,\"journal\":{\"name\":\"History & computing\",\"volume\":\"44 1\",\"pages\":\"24-37\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1996-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"History & computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3366/HAC.1996.8.1.24\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"History & computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3366/HAC.1996.8.1.24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

经济史研究经常使用人类身高作为净营养的代表。这种人体测量方法使历史学家能够测量时间趋势和营养状况的差异。然而,最广泛使用的历史高度数据来源,即军事集结登记册,不能被视为基础人口的随机样本。正态分布的下半部分受到一种叫做短缺的现象的侵蚀,因为在某个阈值(截断点)以下,较矮的个体代表性不足。本文综述了两种常用的历史身高样本缺陷分析方法——分位数弯曲估计法(QBE)和简化样本最大似然估计法(RSMLE)。由于这些程序的缺点,提出了一种新的计算方法,用于识别具有缺陷的高度样本的截断点,使用密度估计技术,并在奥地利数据集上进行了说明。最后,将该过程与截断回归模型相结合,与QBE进行比较,以估计平均值和标准差。结果再次证明了QBE的不足之处,并为新方法提供了良好的启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Historical Height Samples with Shortfall: A Computational Approach
Research in economic history frequently uses human height as a proxy for net nutrition. This anthropometric method enables historians to measure time trends and differences in nutritional status. However, the most widely used data sources for historical heights, military mustering registers, cannot be regarded as random samples of the underlying population. The lower side of the otherwise normal distribution is eroded by a phenomenon called shortfall, because shorter individuals are under-represented below a certain threshold (truncation point). This paper reviews two widely used methods for analyzing historical height samples with shortfall - the Quantile Bend Estimator (QBE) and the Reduced Sample Maximum Likelihood Estimator (RSMLE). Because of the drawbacks of these procedures, a new computational approach for identifying the truncation point of height samples with shortfall, using density estimation techniques, is proposed and illustrated on an Austrian dataset. Finally, this procedure, combined with a truncated regression model, is compared to the QBE to estimate the mean and the standard deviation. The results demonstrate the deficiencies of the QBE again and cast a good light on the new method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信