阻塞复合对称协方差结构下相关矩阵的渐近分布

Pub Date : 2021-05-31 DOI:10.1142/S2010326322500162
S. Tsukada
{"title":"阻塞复合对称协方差结构下相关矩阵的渐近分布","authors":"S. Tsukada","doi":"10.1142/S2010326322500162","DOIUrl":null,"url":null,"abstract":"Assuming a covariance structure with blocked compound symmetry, it was showed that unbiased estimators for the covariance matrices are optimal under normality. In this paper, we derive the asymptotic distribution of the correlation matrix using unbiased estimators and discuss its use in hypothesis testing. The accuracy of the result is investigated through numerical simulation and the method is applied to real data.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Asymptotic distribution of correlation matrix under blocked compound symmetric covariance structure\",\"authors\":\"S. Tsukada\",\"doi\":\"10.1142/S2010326322500162\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Assuming a covariance structure with blocked compound symmetry, it was showed that unbiased estimators for the covariance matrices are optimal under normality. In this paper, we derive the asymptotic distribution of the correlation matrix using unbiased estimators and discuss its use in hypothesis testing. The accuracy of the result is investigated through numerical simulation and the method is applied to real data.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/S2010326322500162\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/S2010326322500162","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

假设一个具有阻塞复合对称的协方差结构,证明了协方差矩阵的无偏估计量在正态性下是最优的。本文利用无偏估计导出了相关矩阵的渐近分布,并讨论了无偏估计在假设检验中的应用。通过数值模拟验证了计算结果的准确性,并将该方法应用于实际数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Asymptotic distribution of correlation matrix under blocked compound symmetric covariance structure
Assuming a covariance structure with blocked compound symmetry, it was showed that unbiased estimators for the covariance matrices are optimal under normality. In this paper, we derive the asymptotic distribution of the correlation matrix using unbiased estimators and discuss its use in hypothesis testing. The accuracy of the result is investigated through numerical simulation and the method is applied to real data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信