{"title":"阻塞复合对称协方差结构下相关矩阵的渐近分布","authors":"S. Tsukada","doi":"10.1142/S2010326322500162","DOIUrl":null,"url":null,"abstract":"Assuming a covariance structure with blocked compound symmetry, it was showed that unbiased estimators for the covariance matrices are optimal under normality. In this paper, we derive the asymptotic distribution of the correlation matrix using unbiased estimators and discuss its use in hypothesis testing. The accuracy of the result is investigated through numerical simulation and the method is applied to real data.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Asymptotic distribution of correlation matrix under blocked compound symmetric covariance structure\",\"authors\":\"S. Tsukada\",\"doi\":\"10.1142/S2010326322500162\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Assuming a covariance structure with blocked compound symmetry, it was showed that unbiased estimators for the covariance matrices are optimal under normality. In this paper, we derive the asymptotic distribution of the correlation matrix using unbiased estimators and discuss its use in hypothesis testing. The accuracy of the result is investigated through numerical simulation and the method is applied to real data.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/S2010326322500162\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/S2010326322500162","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Asymptotic distribution of correlation matrix under blocked compound symmetric covariance structure
Assuming a covariance structure with blocked compound symmetry, it was showed that unbiased estimators for the covariance matrices are optimal under normality. In this paper, we derive the asymptotic distribution of the correlation matrix using unbiased estimators and discuss its use in hypothesis testing. The accuracy of the result is investigated through numerical simulation and the method is applied to real data.