{"title":"Narayana数是两个以b为基数的数字的和","authors":"P. Ray, K. Bhoi, Bijan Kumar Patel","doi":"10.12697/acutm.2022.26.12","DOIUrl":null,"url":null,"abstract":"In this study, we find all Narayana numbers which are expressible as sums of two base b repdigits. The proof of the main result uses lower bounds for linear forms in logarithms of algebraic numbers and a version of the Baker–Davenport reduction method.","PeriodicalId":42426,"journal":{"name":"Acta et Commentationes Universitatis Tartuensis de Mathematica","volume":"21 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2022-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Narayana numbers as sums of two base b repdigits\",\"authors\":\"P. Ray, K. Bhoi, Bijan Kumar Patel\",\"doi\":\"10.12697/acutm.2022.26.12\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, we find all Narayana numbers which are expressible as sums of two base b repdigits. The proof of the main result uses lower bounds for linear forms in logarithms of algebraic numbers and a version of the Baker–Davenport reduction method.\",\"PeriodicalId\":42426,\"journal\":{\"name\":\"Acta et Commentationes Universitatis Tartuensis de Mathematica\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2022-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta et Commentationes Universitatis Tartuensis de Mathematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12697/acutm.2022.26.12\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta et Commentationes Universitatis Tartuensis de Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12697/acutm.2022.26.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
In this study, we find all Narayana numbers which are expressible as sums of two base b repdigits. The proof of the main result uses lower bounds for linear forms in logarithms of algebraic numbers and a version of the Baker–Davenport reduction method.