R. V. Elzen, E. Schoenmakers, Inger Brandt, P. Veken, A. Lambeir
{"title":"配体诱导的脯氨酰寡肽酶的构象变化:动力学方法","authors":"R. V. Elzen, E. Schoenmakers, Inger Brandt, P. Veken, A. Lambeir","doi":"10.1093/protein/gzw079","DOIUrl":null,"url":null,"abstract":"Most kinetic studies of prolyl oligopeptidase (PREP) were performed with the porcine enzyme using modified peptide substrates. Yet recent biophysical studies used the human homolog. Therefore, the aim of this study was to compare the kinetic behavior of human and porcine PREP, as well as to find a suitable method to study enzyme kinetics with an unmodified biological substrate. It was found that human PREP behaves identically to the porcine homolog, displaying a double bell-shaped pH profile and a pH-dependent solvent kinetic isotope effect of the kcat/Km, features that set it apart from the related exopeptidase dipeptidyl peptidase IV (DPP IV). However, the empirical temperature coefficient Q10, describing the temperature dependency of the kinetic parameters and the non-linear Arrhenius plot of kcat/Km are common characteristics between PREP and DPP IV. The results also demonstrate the feasibility of microcalorimetry for measuring turn-over of proline containing peptides.","PeriodicalId":20681,"journal":{"name":"Protein Engineering, Design and Selection","volume":"23 1","pages":"217–224"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Ligand-induced conformational changes in prolyl oligopeptidase: a kinetic approach\",\"authors\":\"R. V. Elzen, E. Schoenmakers, Inger Brandt, P. Veken, A. Lambeir\",\"doi\":\"10.1093/protein/gzw079\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Most kinetic studies of prolyl oligopeptidase (PREP) were performed with the porcine enzyme using modified peptide substrates. Yet recent biophysical studies used the human homolog. Therefore, the aim of this study was to compare the kinetic behavior of human and porcine PREP, as well as to find a suitable method to study enzyme kinetics with an unmodified biological substrate. It was found that human PREP behaves identically to the porcine homolog, displaying a double bell-shaped pH profile and a pH-dependent solvent kinetic isotope effect of the kcat/Km, features that set it apart from the related exopeptidase dipeptidyl peptidase IV (DPP IV). However, the empirical temperature coefficient Q10, describing the temperature dependency of the kinetic parameters and the non-linear Arrhenius plot of kcat/Km are common characteristics between PREP and DPP IV. The results also demonstrate the feasibility of microcalorimetry for measuring turn-over of proline containing peptides.\",\"PeriodicalId\":20681,\"journal\":{\"name\":\"Protein Engineering, Design and Selection\",\"volume\":\"23 1\",\"pages\":\"217–224\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Protein Engineering, Design and Selection\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/protein/gzw079\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protein Engineering, Design and Selection","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/protein/gzw079","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Ligand-induced conformational changes in prolyl oligopeptidase: a kinetic approach
Most kinetic studies of prolyl oligopeptidase (PREP) were performed with the porcine enzyme using modified peptide substrates. Yet recent biophysical studies used the human homolog. Therefore, the aim of this study was to compare the kinetic behavior of human and porcine PREP, as well as to find a suitable method to study enzyme kinetics with an unmodified biological substrate. It was found that human PREP behaves identically to the porcine homolog, displaying a double bell-shaped pH profile and a pH-dependent solvent kinetic isotope effect of the kcat/Km, features that set it apart from the related exopeptidase dipeptidyl peptidase IV (DPP IV). However, the empirical temperature coefficient Q10, describing the temperature dependency of the kinetic parameters and the non-linear Arrhenius plot of kcat/Km are common characteristics between PREP and DPP IV. The results also demonstrate the feasibility of microcalorimetry for measuring turn-over of proline containing peptides.