一般样本协方差矩阵特征值的几个强收敛定理

Pub Date : 2021-11-27 DOI:10.1142/s2010326322500290
Yanqing Yin
{"title":"一般样本协方差矩阵特征值的几个强收敛定理","authors":"Yanqing Yin","doi":"10.1142/s2010326322500290","DOIUrl":null,"url":null,"abstract":"The aim of this paper is to investigate the spectral properties of sample covariance matrices under a more general population. We consider a class of matrices of the form [Formula: see text], where [Formula: see text] is a [Formula: see text] nonrandom matrix and [Formula: see text] is an [Formula: see text] matrix consisting of i.i.d standard complex entries. [Formula: see text] as [Formula: see text] while [Formula: see text] can be arbitrary but no smaller than [Formula: see text]. We first prove that under some mild assumptions, with probability 1, for all large [Formula: see text], there will be no eigenvalues in any closed interval contained in an open interval which is outside the supports of the limiting distributions for all sufficiently large [Formula: see text]. Then we get the strong convergence result for the extreme eigenvalues as an extension of Bai-Yin law.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Some strong convergence theorems for eigenvalues of general sample covariance matrices\",\"authors\":\"Yanqing Yin\",\"doi\":\"10.1142/s2010326322500290\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of this paper is to investigate the spectral properties of sample covariance matrices under a more general population. We consider a class of matrices of the form [Formula: see text], where [Formula: see text] is a [Formula: see text] nonrandom matrix and [Formula: see text] is an [Formula: see text] matrix consisting of i.i.d standard complex entries. [Formula: see text] as [Formula: see text] while [Formula: see text] can be arbitrary but no smaller than [Formula: see text]. We first prove that under some mild assumptions, with probability 1, for all large [Formula: see text], there will be no eigenvalues in any closed interval contained in an open interval which is outside the supports of the limiting distributions for all sufficiently large [Formula: see text]. Then we get the strong convergence result for the extreme eigenvalues as an extension of Bai-Yin law.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s2010326322500290\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s2010326322500290","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文的目的是研究样本协方差矩阵在更一般的总体下的谱性质。我们考虑一类形式为[公式:见文]的矩阵,其中[公式:见文]是一个[公式:见文]非随机矩阵,[公式:见文]是一个由i.i.d个标准复数项组成的[公式:见文]矩阵。[公式:见文本]与[公式:见文本]相同,而[公式:见文本]可以任意设置,但不小于[公式:见文本]。我们首先证明了在一些温和的假设下,在概率为1的情况下,对于所有大的[公式:见文],在所有足够大的[公式:见文]的极限分布支持之外的开放区间所包含的任何闭区间中不存在特征值。然后作为白音定律的推广,得到了特征值极值的强收敛性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Some strong convergence theorems for eigenvalues of general sample covariance matrices
The aim of this paper is to investigate the spectral properties of sample covariance matrices under a more general population. We consider a class of matrices of the form [Formula: see text], where [Formula: see text] is a [Formula: see text] nonrandom matrix and [Formula: see text] is an [Formula: see text] matrix consisting of i.i.d standard complex entries. [Formula: see text] as [Formula: see text] while [Formula: see text] can be arbitrary but no smaller than [Formula: see text]. We first prove that under some mild assumptions, with probability 1, for all large [Formula: see text], there will be no eigenvalues in any closed interval contained in an open interval which is outside the supports of the limiting distributions for all sufficiently large [Formula: see text]. Then we get the strong convergence result for the extreme eigenvalues as an extension of Bai-Yin law.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信