基于二维调制约束的BPMR系统比特翻转技术。

W. Busyatras, N. Jongsawat, L. Myint, C. Warisarn
{"title":"基于二维调制约束的BPMR系统比特翻转技术。","authors":"W. Busyatras, N. Jongsawat, L. Myint, C. Warisarn","doi":"10.1109/INTMAG.2018.8508198","DOIUrl":null,"url":null,"abstract":"Inter-track interference (ITI) cancelation is one of the considerable challenges for high areal density (AD) magnetic recording such as in bit-patterned media recording (BPMR) systems. In literature, the two-dimensional (2D) modulation codes have been proposed to cancel the ITI effect [1, 2] which can efficiently improve the overall system performance, e.g., a rate-5/6 2D modulation code [2]. Although the rate-5/6 modulation code ensures that the readback signal of the center track will not be corrupted by severe ITI; however, both the upper and lower tracks can still be interfered by their sidetracks. To improve this shortcoming; therefore, we propose the bit-flipping technique that performs together with the rate5/6 2D modulation code. Here, the relationship between the data encoding condition and soft-information obtained from the soft output Viterbi algorithm (SOVA) detector is utilized to be a criterion for flipping the ambiguous data bits. Simulation results indicate that the proposed system is better than the conventional coded system under with/without media noise and track mis-registration.","PeriodicalId":6571,"journal":{"name":"2018 IEEE International Magnetic Conference (INTERMAG)","volume":"87 1","pages":"1-1"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Bit-Flipping Technique Based on 2D Modulation Constraint in BPMR Systems.\",\"authors\":\"W. Busyatras, N. Jongsawat, L. Myint, C. Warisarn\",\"doi\":\"10.1109/INTMAG.2018.8508198\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Inter-track interference (ITI) cancelation is one of the considerable challenges for high areal density (AD) magnetic recording such as in bit-patterned media recording (BPMR) systems. In literature, the two-dimensional (2D) modulation codes have been proposed to cancel the ITI effect [1, 2] which can efficiently improve the overall system performance, e.g., a rate-5/6 2D modulation code [2]. Although the rate-5/6 modulation code ensures that the readback signal of the center track will not be corrupted by severe ITI; however, both the upper and lower tracks can still be interfered by their sidetracks. To improve this shortcoming; therefore, we propose the bit-flipping technique that performs together with the rate5/6 2D modulation code. Here, the relationship between the data encoding condition and soft-information obtained from the soft output Viterbi algorithm (SOVA) detector is utilized to be a criterion for flipping the ambiguous data bits. Simulation results indicate that the proposed system is better than the conventional coded system under with/without media noise and track mis-registration.\",\"PeriodicalId\":6571,\"journal\":{\"name\":\"2018 IEEE International Magnetic Conference (INTERMAG)\",\"volume\":\"87 1\",\"pages\":\"1-1\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Magnetic Conference (INTERMAG)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INTMAG.2018.8508198\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Magnetic Conference (INTERMAG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INTMAG.2018.8508198","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

磁道间干扰(ITI)消除是高面密度(AD)磁记录(如比特模式媒体记录(BPMR)系统)面临的重大挑战之一。在文献中,已经提出了二维(2D)调制码来消除ITI效应[1,2],可以有效地提高系统的整体性能,例如,速率为5/6的二维调制码[2]。虽然速率-5/6调制码保证了中心轨道的读回信号不会被严重的ITI破坏;然而,上下轨道仍然会受到其侧轨的干扰。改善这个缺点;因此,我们提出了与速率为5/6的二维调制码一起执行的比特翻转技术。在这里,利用软输出Viterbi算法(SOVA)检测器获得的数据编码条件与软信息之间的关系作为翻转模糊数据位的标准。仿真结果表明,在有无介质噪声和航迹错配的情况下,该系统的性能优于传统的编码系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Bit-Flipping Technique Based on 2D Modulation Constraint in BPMR Systems.
Inter-track interference (ITI) cancelation is one of the considerable challenges for high areal density (AD) magnetic recording such as in bit-patterned media recording (BPMR) systems. In literature, the two-dimensional (2D) modulation codes have been proposed to cancel the ITI effect [1, 2] which can efficiently improve the overall system performance, e.g., a rate-5/6 2D modulation code [2]. Although the rate-5/6 modulation code ensures that the readback signal of the center track will not be corrupted by severe ITI; however, both the upper and lower tracks can still be interfered by their sidetracks. To improve this shortcoming; therefore, we propose the bit-flipping technique that performs together with the rate5/6 2D modulation code. Here, the relationship between the data encoding condition and soft-information obtained from the soft output Viterbi algorithm (SOVA) detector is utilized to be a criterion for flipping the ambiguous data bits. Simulation results indicate that the proposed system is better than the conventional coded system under with/without media noise and track mis-registration.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信