{"title":"高光催化活性纳米金红石相TiO2的快速简便合成方法","authors":"Priyanka P. Bidaye, J. Fernandes","doi":"10.4236/GSC.2019.92003","DOIUrl":null,"url":null,"abstract":"A green, rapid and facile method for synthesis of pure rutile TiO2 has been developed. Rutile TiO2 of high purity was synthesized by controlled hydrolysis of TiCl3 in aqueous medium at room temperature. Addition of nitric acid to TiCl3 greatly increased the rate of TiCl3 hydrolysis, crystallization and surface area of the prepared TiO2 powder. The phase obtained in this way was identified by X-ray diffraction. TiO2 synthesized by this method showed a unique flower-like assembly of nanotubes, very high surface area and high photocatalytic activity under visible light irradiation.","PeriodicalId":12770,"journal":{"name":"Green and Sustainable Chemistry","volume":"12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Rapid and Facile Synthesis Method for Nanosize Rutile Phase TiO2 with High Photocatalytic Activity\",\"authors\":\"Priyanka P. Bidaye, J. Fernandes\",\"doi\":\"10.4236/GSC.2019.92003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A green, rapid and facile method for synthesis of pure rutile TiO2 has been developed. Rutile TiO2 of high purity was synthesized by controlled hydrolysis of TiCl3 in aqueous medium at room temperature. Addition of nitric acid to TiCl3 greatly increased the rate of TiCl3 hydrolysis, crystallization and surface area of the prepared TiO2 powder. The phase obtained in this way was identified by X-ray diffraction. TiO2 synthesized by this method showed a unique flower-like assembly of nanotubes, very high surface area and high photocatalytic activity under visible light irradiation.\",\"PeriodicalId\":12770,\"journal\":{\"name\":\"Green and Sustainable Chemistry\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Green and Sustainable Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4236/GSC.2019.92003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green and Sustainable Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4236/GSC.2019.92003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Rapid and Facile Synthesis Method for Nanosize Rutile Phase TiO2 with High Photocatalytic Activity
A green, rapid and facile method for synthesis of pure rutile TiO2 has been developed. Rutile TiO2 of high purity was synthesized by controlled hydrolysis of TiCl3 in aqueous medium at room temperature. Addition of nitric acid to TiCl3 greatly increased the rate of TiCl3 hydrolysis, crystallization and surface area of the prepared TiO2 powder. The phase obtained in this way was identified by X-ray diffraction. TiO2 synthesized by this method showed a unique flower-like assembly of nanotubes, very high surface area and high photocatalytic activity under visible light irradiation.