{"title":"特低渗透砂岩储层驱替过程中毛管压力的动态影响","authors":"Ying Li, Haitao Li, Jianchao Cai, Qirui Ma, Jianfeng Zhang","doi":"10.26804/CAPI.2018.02.01","DOIUrl":null,"url":null,"abstract":"The relationship between the capillary pressure and saturation is a primary factor to describe and simulate the multiphase flow. This relationship is also fundamental to understand the characteristics of oil and gas reservoirs and make the reservoir development plan. Traditionally, the capillary pressure is measured under the equilibrium process; however, this equilibrium is hard to establish when the multiphase flow is expected in low to tight permeability porous media, and the capillary pressure is dynamic. This laboratory study conducts specially designed dynamic displacement experiments to examine the dynamic effect in capillary pressure in ultra-low permeability sandstone oil reservoirs. The dynamic capillary pressure, the dynamic relative permeabilities, the dynamic coefficient and the change rate of water saturation are obtained. Results show that the dynamic coefficient is relatively larger in ultra-low permeability reservoirs compared with that in high to low permeability reservoirs. Difference between the dynamic and the steady capillary pressures becomes more significant for less permeable porous media, with a higher dynamic coefficient and a stronger dynamic effect. Wettability advancement has been triggered during the dynamic displacement process, which is responsible for the water-wet rock before the displacement to be oil-wet during the displacement process. The difference between the dynamic and the steady relative permeabilities becomes obvious, and the dynamic effect in capillary pressure cannot be neglected when the permeability reaches ultra-low. The dynamic coefficient can reveal the shape of the displacement front. Cited as : Li, Y., Li, H., Cai, J., Ma, Q., Zhang, J. The dynamic effect in capillary pressure during the displacement process in ultra-low permeability sandstone reservoirs. Capillarity, 2018, 1(2): 11-18, doi: 10.26804/capi.2018.02.01.","PeriodicalId":34047,"journal":{"name":"Capillarity","volume":"23 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"The dynamic effect in capillary pressure during the displacement process in ultra-low permeability sandstone reservoirs\",\"authors\":\"Ying Li, Haitao Li, Jianchao Cai, Qirui Ma, Jianfeng Zhang\",\"doi\":\"10.26804/CAPI.2018.02.01\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The relationship between the capillary pressure and saturation is a primary factor to describe and simulate the multiphase flow. This relationship is also fundamental to understand the characteristics of oil and gas reservoirs and make the reservoir development plan. Traditionally, the capillary pressure is measured under the equilibrium process; however, this equilibrium is hard to establish when the multiphase flow is expected in low to tight permeability porous media, and the capillary pressure is dynamic. This laboratory study conducts specially designed dynamic displacement experiments to examine the dynamic effect in capillary pressure in ultra-low permeability sandstone oil reservoirs. The dynamic capillary pressure, the dynamic relative permeabilities, the dynamic coefficient and the change rate of water saturation are obtained. Results show that the dynamic coefficient is relatively larger in ultra-low permeability reservoirs compared with that in high to low permeability reservoirs. Difference between the dynamic and the steady capillary pressures becomes more significant for less permeable porous media, with a higher dynamic coefficient and a stronger dynamic effect. Wettability advancement has been triggered during the dynamic displacement process, which is responsible for the water-wet rock before the displacement to be oil-wet during the displacement process. The difference between the dynamic and the steady relative permeabilities becomes obvious, and the dynamic effect in capillary pressure cannot be neglected when the permeability reaches ultra-low. The dynamic coefficient can reveal the shape of the displacement front. Cited as : Li, Y., Li, H., Cai, J., Ma, Q., Zhang, J. The dynamic effect in capillary pressure during the displacement process in ultra-low permeability sandstone reservoirs. Capillarity, 2018, 1(2): 11-18, doi: 10.26804/capi.2018.02.01.\",\"PeriodicalId\":34047,\"journal\":{\"name\":\"Capillarity\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Capillarity\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26804/CAPI.2018.02.01\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Capillarity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26804/CAPI.2018.02.01","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
The dynamic effect in capillary pressure during the displacement process in ultra-low permeability sandstone reservoirs
The relationship between the capillary pressure and saturation is a primary factor to describe and simulate the multiphase flow. This relationship is also fundamental to understand the characteristics of oil and gas reservoirs and make the reservoir development plan. Traditionally, the capillary pressure is measured under the equilibrium process; however, this equilibrium is hard to establish when the multiphase flow is expected in low to tight permeability porous media, and the capillary pressure is dynamic. This laboratory study conducts specially designed dynamic displacement experiments to examine the dynamic effect in capillary pressure in ultra-low permeability sandstone oil reservoirs. The dynamic capillary pressure, the dynamic relative permeabilities, the dynamic coefficient and the change rate of water saturation are obtained. Results show that the dynamic coefficient is relatively larger in ultra-low permeability reservoirs compared with that in high to low permeability reservoirs. Difference between the dynamic and the steady capillary pressures becomes more significant for less permeable porous media, with a higher dynamic coefficient and a stronger dynamic effect. Wettability advancement has been triggered during the dynamic displacement process, which is responsible for the water-wet rock before the displacement to be oil-wet during the displacement process. The difference between the dynamic and the steady relative permeabilities becomes obvious, and the dynamic effect in capillary pressure cannot be neglected when the permeability reaches ultra-low. The dynamic coefficient can reveal the shape of the displacement front. Cited as : Li, Y., Li, H., Cai, J., Ma, Q., Zhang, J. The dynamic effect in capillary pressure during the displacement process in ultra-low permeability sandstone reservoirs. Capillarity, 2018, 1(2): 11-18, doi: 10.26804/capi.2018.02.01.
CapillarityPhysics and Astronomy-Surfaces and Interfaces
CiteScore
7.10
自引率
0.00%
发文量
15
审稿时长
2~3 weeks
期刊介绍:
Capillarity publishes high-quality original research articles and current reviews on fundamental scientific principles and innovations of capillarity in physics, chemistry, biology, environmental science and related emerging fields. All advances in theoretical, numerical and experimental approaches to capillarity in capillary tube and interface dominated structure and system area are welcome.
The following topics are within (but not limited to) the scope of capillarity:
i) Capillary-driven phenomenon in natural/artificial tubes, porous and nanoporous materials
ii) Fundamental mechanisms of capillarity aided by theory and experiments
iii) Spontaneous imbibition, adsorption, wicking and related applications of capillarity in hydrocarbon production, chemical process and biological sciences
iv) Static and dynamic interfacial processes, surfactants, wettability, film and colloids
v) New approaches and technologies on capillarity
Capillarity is a quarterly open access journal and free to read for all. The journal provides a communicate platform for researchers who are interested in all fields of capillary phenomenon.