{"title":"利用复分数阶导数求解Herglotz型变分问题的Noether定理","authors":"M. Janev, T. Atanacković, S. Pilipovic","doi":"10.2298/tam210913011j","DOIUrl":null,"url":null,"abstract":"This is a review article which elaborates the results presented in [1], where the variational principle of Herglotz type with a Lagrangian that depends on fractional derivatives of both real and complex orders is formulated and the invariance of this principle under the action of a local group of symmetries is determined. The conservation law for the corresponding fractional Euler Lagrange equation is obtained and a sequence of approximations of a fractional Euler-Lagrange equation by systems of integer order equations established and analyzed.","PeriodicalId":44059,"journal":{"name":"Theoretical and Applied Mechanics","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Noether’s theorem for Herglotz type variational problems utilizing complex fractional derivatives\",\"authors\":\"M. Janev, T. Atanacković, S. Pilipovic\",\"doi\":\"10.2298/tam210913011j\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This is a review article which elaborates the results presented in [1], where the variational principle of Herglotz type with a Lagrangian that depends on fractional derivatives of both real and complex orders is formulated and the invariance of this principle under the action of a local group of symmetries is determined. The conservation law for the corresponding fractional Euler Lagrange equation is obtained and a sequence of approximations of a fractional Euler-Lagrange equation by systems of integer order equations established and analyzed.\",\"PeriodicalId\":44059,\"journal\":{\"name\":\"Theoretical and Applied Mechanics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical and Applied Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2298/tam210913011j\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Applied Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2298/tam210913011j","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
Noether’s theorem for Herglotz type variational problems utilizing complex fractional derivatives
This is a review article which elaborates the results presented in [1], where the variational principle of Herglotz type with a Lagrangian that depends on fractional derivatives of both real and complex orders is formulated and the invariance of this principle under the action of a local group of symmetries is determined. The conservation law for the corresponding fractional Euler Lagrange equation is obtained and a sequence of approximations of a fractional Euler-Lagrange equation by systems of integer order equations established and analyzed.
期刊介绍:
Theoretical and Applied Mechanics (TAM) invites submission of original scholarly work in all fields of theoretical and applied mechanics. TAM features selected high quality research articles that represent the broad spectrum of interest in mechanics.