DDPCR技术在水中总大肠菌群定量中的应用与发展

Wei Ma, Yi Kong, Weng U Ho, Sivette Lam, G. Liu, Sin Neng Chio
{"title":"DDPCR技术在水中总大肠菌群定量中的应用与发展","authors":"Wei Ma, Yi Kong, Weng U Ho, Sivette Lam, G. Liu, Sin Neng Chio","doi":"10.11648/J.AJEP.20200902.11","DOIUrl":null,"url":null,"abstract":"In this research, the detection method for absolute quantification of total coliforms was established based on Droplet Digital Polymerase Chain Reaction (DDPCR) technology using lacZ as the target gene for coliform group detection. The experimental conditions (e.g. primer and probe concentrations, annealing temperatures, etc) were well optimized. Besides, the linear range, precision and limit of quantification (LOQ) of this method were investigated and evaluated. The results illustrated that the optimal primer concentration was 0.2 μmol/L, whereas the optimal probe concentration was 0.5 μmol/L. The optimal annealing temperature was 56°C. The linear relationship between the total coliform genome DNA concentrations derived from DDPCR and DNA fluorometer was quite good (R2 = 0.999). The linear range was 3.95 ~ 7.80 × 104 copies/20 μL DDPCR reaction system. The LOQ for total coliforms was single copy per reaction system. Practical applications using real water samples collected from water supply system in Macao illustrated that this innovative method possessed high efficiencies and capabilities. This is probably the first research using DDPCR technology to absolutely qualify and quantify total coliforms and successfully applied it in Macao water supply system. The achievements from this research could provide with significant values for setting-up the emergency mechanism of water pollution in early stage.","PeriodicalId":7549,"journal":{"name":"American Journal of Environmental Protection","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The Development and Application of DDPCR Technology on Quantification of Total Coliforms in Water\",\"authors\":\"Wei Ma, Yi Kong, Weng U Ho, Sivette Lam, G. Liu, Sin Neng Chio\",\"doi\":\"10.11648/J.AJEP.20200902.11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this research, the detection method for absolute quantification of total coliforms was established based on Droplet Digital Polymerase Chain Reaction (DDPCR) technology using lacZ as the target gene for coliform group detection. The experimental conditions (e.g. primer and probe concentrations, annealing temperatures, etc) were well optimized. Besides, the linear range, precision and limit of quantification (LOQ) of this method were investigated and evaluated. The results illustrated that the optimal primer concentration was 0.2 μmol/L, whereas the optimal probe concentration was 0.5 μmol/L. The optimal annealing temperature was 56°C. The linear relationship between the total coliform genome DNA concentrations derived from DDPCR and DNA fluorometer was quite good (R2 = 0.999). The linear range was 3.95 ~ 7.80 × 104 copies/20 μL DDPCR reaction system. The LOQ for total coliforms was single copy per reaction system. Practical applications using real water samples collected from water supply system in Macao illustrated that this innovative method possessed high efficiencies and capabilities. This is probably the first research using DDPCR technology to absolutely qualify and quantify total coliforms and successfully applied it in Macao water supply system. The achievements from this research could provide with significant values for setting-up the emergency mechanism of water pollution in early stage.\",\"PeriodicalId\":7549,\"journal\":{\"name\":\"American Journal of Environmental Protection\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American Journal of Environmental Protection\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11648/J.AJEP.20200902.11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Environmental Protection","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11648/J.AJEP.20200902.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本研究基于液滴数字聚合酶链式反应(Droplet Digital Polymerase Chain Reaction, DDPCR)技术,以lacZ作为大肠菌群检测的靶基因,建立了总大肠菌群绝对定量的检测方法。实验条件(引物和探针浓度、退火温度等)得到了很好的优化。并对该方法的线性范围、精密度和定量限进行了考察和评价。结果表明,引物浓度为0.2 μmol/L,探针浓度为0.5 μmol/L。最佳退火温度为56℃。DDPCR检测的总大肠菌群基因组DNA浓度与DNA荧光仪检测结果呈良好的线性关系(R2 = 0.999)。线性范围为3.95 ~ 7.80 × 104 copies/20 μL。总大肠菌群的定量限为每个反应体系单副本。从澳门供水系统采集的真实水样的实际应用表明,该创新方法具有很高的效率和能力。这可能是首次使用DDPCR技术对总大肠菌群进行绝对定性和定量,并成功应用于澳门供水系统的研究。本研究成果对建立水污染早期应急机制具有重要的参考价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Development and Application of DDPCR Technology on Quantification of Total Coliforms in Water
In this research, the detection method for absolute quantification of total coliforms was established based on Droplet Digital Polymerase Chain Reaction (DDPCR) technology using lacZ as the target gene for coliform group detection. The experimental conditions (e.g. primer and probe concentrations, annealing temperatures, etc) were well optimized. Besides, the linear range, precision and limit of quantification (LOQ) of this method were investigated and evaluated. The results illustrated that the optimal primer concentration was 0.2 μmol/L, whereas the optimal probe concentration was 0.5 μmol/L. The optimal annealing temperature was 56°C. The linear relationship between the total coliform genome DNA concentrations derived from DDPCR and DNA fluorometer was quite good (R2 = 0.999). The linear range was 3.95 ~ 7.80 × 104 copies/20 μL DDPCR reaction system. The LOQ for total coliforms was single copy per reaction system. Practical applications using real water samples collected from water supply system in Macao illustrated that this innovative method possessed high efficiencies and capabilities. This is probably the first research using DDPCR technology to absolutely qualify and quantify total coliforms and successfully applied it in Macao water supply system. The achievements from this research could provide with significant values for setting-up the emergency mechanism of water pollution in early stage.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信