非线性回归模糊隶属函数评价的一种算法方法

IF 1.3 Q2 MATHEMATICS, APPLIED
Rupak Bhattacharyya, S. Mukherjee
{"title":"非线性回归模糊隶属函数评价的一种算法方法","authors":"Rupak Bhattacharyya, S. Mukherjee","doi":"10.1080/16168658.2021.1911567","DOIUrl":null,"url":null,"abstract":"ABSTRACT In most researches on fuzzy sets and its application, it is found that the consideration of membership function is predetermined and mostly linear in nature. Extraction and evaluation of non-linear fuzzy membership function that can update itself with in different paradigms is still a matter of great concern to researchers. Here, we discuss 33 different membership function evaluation methodologies published between 1971 and 2016. In a approach to solve the problem, this paper presents a novel algorithm based non-linear fuzzy membership function evaluation scheme with the help of regression analysis and algebra. Three different case studies are done to check the applicability and tractability of the method. A comparative analysis with recent literature justifies the robustness of the proposed method.","PeriodicalId":37623,"journal":{"name":"Fuzzy Information and Engineering","volume":"59 1","pages":"412 - 434"},"PeriodicalIF":1.3000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Fuzzy Membership Function Evaluation by Non-Linear Regression: An Algorithmic Approach\",\"authors\":\"Rupak Bhattacharyya, S. Mukherjee\",\"doi\":\"10.1080/16168658.2021.1911567\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT In most researches on fuzzy sets and its application, it is found that the consideration of membership function is predetermined and mostly linear in nature. Extraction and evaluation of non-linear fuzzy membership function that can update itself with in different paradigms is still a matter of great concern to researchers. Here, we discuss 33 different membership function evaluation methodologies published between 1971 and 2016. In a approach to solve the problem, this paper presents a novel algorithm based non-linear fuzzy membership function evaluation scheme with the help of regression analysis and algebra. Three different case studies are done to check the applicability and tractability of the method. A comparative analysis with recent literature justifies the robustness of the proposed method.\",\"PeriodicalId\":37623,\"journal\":{\"name\":\"Fuzzy Information and Engineering\",\"volume\":\"59 1\",\"pages\":\"412 - 434\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2020-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fuzzy Information and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/16168658.2021.1911567\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fuzzy Information and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/16168658.2021.1911567","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 2

摘要

在大多数关于模糊集及其应用的研究中,发现隶属函数的考虑是预先确定的,本质上大多是线性的。能够在不同范式下自我更新的非线性模糊隶属函数的提取与评价一直是研究人员关注的问题。在这里,我们讨论了1971年至2016年间发表的33种不同的隶属函数评估方法。为了解决这一问题,本文提出了一种基于回归分析和代数的非线性模糊隶属函数评价方案。通过三个不同的案例研究来验证该方法的适用性和可追溯性。与最近文献的比较分析证明了所提出方法的稳健性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fuzzy Membership Function Evaluation by Non-Linear Regression: An Algorithmic Approach
ABSTRACT In most researches on fuzzy sets and its application, it is found that the consideration of membership function is predetermined and mostly linear in nature. Extraction and evaluation of non-linear fuzzy membership function that can update itself with in different paradigms is still a matter of great concern to researchers. Here, we discuss 33 different membership function evaluation methodologies published between 1971 and 2016. In a approach to solve the problem, this paper presents a novel algorithm based non-linear fuzzy membership function evaluation scheme with the help of regression analysis and algebra. Three different case studies are done to check the applicability and tractability of the method. A comparative analysis with recent literature justifies the robustness of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.30
自引率
0.00%
发文量
13
审稿时长
40 weeks
期刊介绍: Fuzzy Information and Engineering—An International Journal wants to provide a unified communication platform for researchers in a wide area of topics from pure and applied mathematics, computer science, engineering, and other related fields. While also accepting fundamental work, the journal focuses on applications. Research papers, short communications, and reviews are welcome. Technical topics within the scope include: (1) Fuzzy Information a. Fuzzy information theory and information systems b. Fuzzy clustering and classification c. Fuzzy information processing d. Hardware and software co-design e. Fuzzy computer f. Fuzzy database and data mining g. Fuzzy image processing and pattern recognition h. Fuzzy information granulation i. Knowledge acquisition and representation in fuzzy information (2) Fuzzy Sets and Systems a. Fuzzy sets b. Fuzzy analysis c. Fuzzy topology and fuzzy mapping d. Fuzzy equation e. Fuzzy programming and optimal f. Fuzzy probability and statistic g. Fuzzy logic and algebra h. General systems i. Fuzzy socioeconomic system j. Fuzzy decision support system k. Fuzzy expert system (3) Soft Computing a. Soft computing theory and foundation b. Nerve cell algorithms c. Genetic algorithms d. Fuzzy approximation algorithms e. Computing with words and Quantum computation (4) Fuzzy Engineering a. Fuzzy control b. Fuzzy system engineering c. Fuzzy knowledge engineering d. Fuzzy management engineering e. Fuzzy design f. Fuzzy industrial engineering g. Fuzzy system modeling (5) Fuzzy Operations Research [...] (6) Artificial Intelligence [...] (7) Others [...]
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信