{"title":"缩放单眼SLAM行走的人","authors":"Daniel Gutiérrez-Gómez, J. J. Guerrero","doi":"10.1145/2493988.2494351","DOIUrl":null,"url":null,"abstract":"In this paper we present a full-scaled real-time monocular SLAM using only a wearable camera. Assuming that the person is walking, the perception of the head oscillatory motion in the initial visual odometry estimate allows for the computation of a dynamic scale factor for static windows of N camera poses. Improving on this method we introduce a consistency test to detect non-walking situations and propose a sliding window approach to reduce the delay in the update of the scaled trajectory. We evaluate our approach experimentally on a unscaled visual odometry estimate obtained with a wearable camera along a path of 886 m. The results show a significant improvement respect to the initial unscaled estimate with a mean relative error of 0.91% over the total trajectory length.","PeriodicalId":90988,"journal":{"name":"The semantic Web--ISWC ... : ... International Semantic Web Conference ... proceedings. International Semantic Web Conference","volume":"49 1","pages":"9-12"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Scaled monocular SLAM for walking people\",\"authors\":\"Daniel Gutiérrez-Gómez, J. J. Guerrero\",\"doi\":\"10.1145/2493988.2494351\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we present a full-scaled real-time monocular SLAM using only a wearable camera. Assuming that the person is walking, the perception of the head oscillatory motion in the initial visual odometry estimate allows for the computation of a dynamic scale factor for static windows of N camera poses. Improving on this method we introduce a consistency test to detect non-walking situations and propose a sliding window approach to reduce the delay in the update of the scaled trajectory. We evaluate our approach experimentally on a unscaled visual odometry estimate obtained with a wearable camera along a path of 886 m. The results show a significant improvement respect to the initial unscaled estimate with a mean relative error of 0.91% over the total trajectory length.\",\"PeriodicalId\":90988,\"journal\":{\"name\":\"The semantic Web--ISWC ... : ... International Semantic Web Conference ... proceedings. International Semantic Web Conference\",\"volume\":\"49 1\",\"pages\":\"9-12\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The semantic Web--ISWC ... : ... International Semantic Web Conference ... proceedings. International Semantic Web Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2493988.2494351\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The semantic Web--ISWC ... : ... International Semantic Web Conference ... proceedings. International Semantic Web Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2493988.2494351","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In this paper we present a full-scaled real-time monocular SLAM using only a wearable camera. Assuming that the person is walking, the perception of the head oscillatory motion in the initial visual odometry estimate allows for the computation of a dynamic scale factor for static windows of N camera poses. Improving on this method we introduce a consistency test to detect non-walking situations and propose a sliding window approach to reduce the delay in the update of the scaled trajectory. We evaluate our approach experimentally on a unscaled visual odometry estimate obtained with a wearable camera along a path of 886 m. The results show a significant improvement respect to the initial unscaled estimate with a mean relative error of 0.91% over the total trajectory length.