{"title":"更快更便宜:在gpu上并行化大规模矩阵分解","authors":"Wei Tan, Liangliang Cao, L. Fong","doi":"10.1145/2907294.2907297","DOIUrl":null,"url":null,"abstract":"Matrix factorization (MF) is used by many popular algorithms such as collaborative filtering. GPU with massive cores and high memory bandwidth sheds light on accelerating MF much further when appropriately exploiting its architectural characteristics. This paper presents cuMF, a CUDA-based matrix factorization library that optimizes alternate least square (ALS) method to solve very large-scale MF. CuMF uses a set of techniques to maximize the performance on single and multiple GPUs. These techniques include smart access of sparse data leveraging GPU memory hierarchy, using data parallelism in conjunction with model parallelism, minimizing the communication overhead among GPUs, and a novel topology-aware parallel reduction scheme. With only a single machine with four Nvidia GPU cards, cuMF can be 6-10 times as fast, and 33-100 times as cost-efficient, compared with the state-of-art distributed CPU solutions. Moreover, cuMF can solve the largest matrix factorization problem ever reported in current literature, with impressively good performance.","PeriodicalId":20515,"journal":{"name":"Proceedings of the 25th ACM International Symposium on High-Performance Parallel and Distributed Computing","volume":"53 70 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2016-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"52","resultStr":"{\"title\":\"Faster and Cheaper: Parallelizing Large-Scale Matrix Factorization on GPUs\",\"authors\":\"Wei Tan, Liangliang Cao, L. Fong\",\"doi\":\"10.1145/2907294.2907297\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Matrix factorization (MF) is used by many popular algorithms such as collaborative filtering. GPU with massive cores and high memory bandwidth sheds light on accelerating MF much further when appropriately exploiting its architectural characteristics. This paper presents cuMF, a CUDA-based matrix factorization library that optimizes alternate least square (ALS) method to solve very large-scale MF. CuMF uses a set of techniques to maximize the performance on single and multiple GPUs. These techniques include smart access of sparse data leveraging GPU memory hierarchy, using data parallelism in conjunction with model parallelism, minimizing the communication overhead among GPUs, and a novel topology-aware parallel reduction scheme. With only a single machine with four Nvidia GPU cards, cuMF can be 6-10 times as fast, and 33-100 times as cost-efficient, compared with the state-of-art distributed CPU solutions. Moreover, cuMF can solve the largest matrix factorization problem ever reported in current literature, with impressively good performance.\",\"PeriodicalId\":20515,\"journal\":{\"name\":\"Proceedings of the 25th ACM International Symposium on High-Performance Parallel and Distributed Computing\",\"volume\":\"53 70 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"52\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 25th ACM International Symposium on High-Performance Parallel and Distributed Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2907294.2907297\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 25th ACM International Symposium on High-Performance Parallel and Distributed Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2907294.2907297","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Faster and Cheaper: Parallelizing Large-Scale Matrix Factorization on GPUs
Matrix factorization (MF) is used by many popular algorithms such as collaborative filtering. GPU with massive cores and high memory bandwidth sheds light on accelerating MF much further when appropriately exploiting its architectural characteristics. This paper presents cuMF, a CUDA-based matrix factorization library that optimizes alternate least square (ALS) method to solve very large-scale MF. CuMF uses a set of techniques to maximize the performance on single and multiple GPUs. These techniques include smart access of sparse data leveraging GPU memory hierarchy, using data parallelism in conjunction with model parallelism, minimizing the communication overhead among GPUs, and a novel topology-aware parallel reduction scheme. With only a single machine with four Nvidia GPU cards, cuMF can be 6-10 times as fast, and 33-100 times as cost-efficient, compared with the state-of-art distributed CPU solutions. Moreover, cuMF can solve the largest matrix factorization problem ever reported in current literature, with impressively good performance.