交通流预测集成的可视化分析方法

Kezhi Kong, Yuxin Ma, Chentao Ye, Junhua Lu, X. Chen, Wei Zhang, Wei Chen
{"title":"交通流预测集成的可视化分析方法","authors":"Kezhi Kong, Yuxin Ma, Chentao Ye, Junhua Lu, X. Chen, Wei Zhang, Wei Chen","doi":"10.2312/pg.20181281","DOIUrl":null,"url":null,"abstract":"Traffic flow prediction plays a significant role in Intelligent Transportation Systems (ITS). Due to the variety of prediction models, the prediction results form an intricate structure of ensembles and hence leave a challenge of understanding and evaluating the ensembles from different perspectives. In this paper, we propose a novel visual analytics approach for analyzing the predicted ensembles. Our approach models the uncertainty of different traffic flow prediction results. The variations of space, time, and network structures of those results are presented with the visualization designs. The visual interface provides a suite of interactions to enhance exploration of the ensembles. With the system, analysts can discover some intrinsic patterns in the ensemble. We use real-world urban traffic data to demonstrate the effectiveness of our system. CCS Concepts •Human-centered computing → Visual analytic;","PeriodicalId":88304,"journal":{"name":"Proceedings. Pacific Conference on Computer Graphics and Applications","volume":"55 1","pages":"61-64"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Visual Analytics Approach for Traffic Flow Prediction Ensembles\",\"authors\":\"Kezhi Kong, Yuxin Ma, Chentao Ye, Junhua Lu, X. Chen, Wei Zhang, Wei Chen\",\"doi\":\"10.2312/pg.20181281\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Traffic flow prediction plays a significant role in Intelligent Transportation Systems (ITS). Due to the variety of prediction models, the prediction results form an intricate structure of ensembles and hence leave a challenge of understanding and evaluating the ensembles from different perspectives. In this paper, we propose a novel visual analytics approach for analyzing the predicted ensembles. Our approach models the uncertainty of different traffic flow prediction results. The variations of space, time, and network structures of those results are presented with the visualization designs. The visual interface provides a suite of interactions to enhance exploration of the ensembles. With the system, analysts can discover some intrinsic patterns in the ensemble. We use real-world urban traffic data to demonstrate the effectiveness of our system. CCS Concepts •Human-centered computing → Visual analytic;\",\"PeriodicalId\":88304,\"journal\":{\"name\":\"Proceedings. Pacific Conference on Computer Graphics and Applications\",\"volume\":\"55 1\",\"pages\":\"61-64\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. Pacific Conference on Computer Graphics and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2312/pg.20181281\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. Pacific Conference on Computer Graphics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2312/pg.20181281","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

交通流预测在智能交通系统中起着重要的作用。由于预测模型的多样性,预测结果形成了一个复杂的系综结构,从而给从不同角度理解和评价系综带来了挑战。在本文中,我们提出了一种新的可视化分析方法来分析预测的集成。我们的方法模拟了不同交通流预测结果的不确定性。这些结果在空间、时间和网络结构上的变化通过可视化设计呈现出来。视觉界面提供了一套交互,以增强对合奏的探索。利用该系统,分析人员可以发现集合中的一些内在模式。我们使用真实的城市交通数据来证明我们系统的有效性。CCS概念•以人为本计算→视觉分析;
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Visual Analytics Approach for Traffic Flow Prediction Ensembles
Traffic flow prediction plays a significant role in Intelligent Transportation Systems (ITS). Due to the variety of prediction models, the prediction results form an intricate structure of ensembles and hence leave a challenge of understanding and evaluating the ensembles from different perspectives. In this paper, we propose a novel visual analytics approach for analyzing the predicted ensembles. Our approach models the uncertainty of different traffic flow prediction results. The variations of space, time, and network structures of those results are presented with the visualization designs. The visual interface provides a suite of interactions to enhance exploration of the ensembles. With the system, analysts can discover some intrinsic patterns in the ensemble. We use real-world urban traffic data to demonstrate the effectiveness of our system. CCS Concepts •Human-centered computing → Visual analytic;
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信