对称和非对称模型及列联表模型的分解

Q4 Mathematics
Kouji Tahata, S. Tomizawa
{"title":"对称和非对称模型及列联表模型的分解","authors":"Kouji Tahata, S. Tomizawa","doi":"10.55937/sut/1424458569","DOIUrl":null,"url":null,"abstract":"For analyzing square contingency tables, Bowker [14] proposed the symmetry model. Caussinus [16] proposed the quasi-symmetry model and gave a decomposition of model such that the symmetry model holds if and only if both the quasi-symmetry and the marginal homogeneity models hold. Bhapkar and Darroch [13] gave the similar theorem for multi-way contingency tables. For square tables and for multi-way tables, the present paper (1) reviews various models of symmetry and asymmetry, (2) reviews the decompositions of models, (3) gives some figures which indicate the relationships among various models, and (4) gives a new decomposition of symmetry model. AMS 2010 Mathematics Subject Classification. 62H17.","PeriodicalId":38708,"journal":{"name":"SUT Journal of Mathematics","volume":"18 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2014-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"Symmetry and asymmetry models and decompositions of models for contingency tables\",\"authors\":\"Kouji Tahata, S. Tomizawa\",\"doi\":\"10.55937/sut/1424458569\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For analyzing square contingency tables, Bowker [14] proposed the symmetry model. Caussinus [16] proposed the quasi-symmetry model and gave a decomposition of model such that the symmetry model holds if and only if both the quasi-symmetry and the marginal homogeneity models hold. Bhapkar and Darroch [13] gave the similar theorem for multi-way contingency tables. For square tables and for multi-way tables, the present paper (1) reviews various models of symmetry and asymmetry, (2) reviews the decompositions of models, (3) gives some figures which indicate the relationships among various models, and (4) gives a new decomposition of symmetry model. AMS 2010 Mathematics Subject Classification. 62H17.\",\"PeriodicalId\":38708,\"journal\":{\"name\":\"SUT Journal of Mathematics\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SUT Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.55937/sut/1424458569\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SUT Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55937/sut/1424458569","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 22

摘要

为了分析方形列联表,Bowker[14]提出了对称模型。Caussinus[16]提出了准对称模型,并给出了模型的分解,使得当且仅当准对称模型和边际均匀性模型都成立时,对称模型成立。Bhapkar和Darroch[13]给出了多路列联表的类似定理。对于方表和多路表,本文(1)综述了对称和不对称的各种模型,(2)综述了模型的分解,(3)给出了各种模型之间关系的一些图,(4)给出了一种新的对称模型分解。AMS 2010数学学科分类。62H17。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Symmetry and asymmetry models and decompositions of models for contingency tables
For analyzing square contingency tables, Bowker [14] proposed the symmetry model. Caussinus [16] proposed the quasi-symmetry model and gave a decomposition of model such that the symmetry model holds if and only if both the quasi-symmetry and the marginal homogeneity models hold. Bhapkar and Darroch [13] gave the similar theorem for multi-way contingency tables. For square tables and for multi-way tables, the present paper (1) reviews various models of symmetry and asymmetry, (2) reviews the decompositions of models, (3) gives some figures which indicate the relationships among various models, and (4) gives a new decomposition of symmetry model. AMS 2010 Mathematics Subject Classification. 62H17.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
SUT Journal of Mathematics
SUT Journal of Mathematics Mathematics-Mathematics (all)
CiteScore
0.30
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信