结合Droop模型和通量平衡模型预测微藻生长过程中的代谢变化

Minkyu Jeon, Boeun Kim, Mingyu Sung, Jay H. Lee
{"title":"结合Droop模型和通量平衡模型预测微藻生长过程中的代谢变化","authors":"Minkyu Jeon, Boeun Kim, Mingyu Sung, Jay H. Lee","doi":"10.1109/ICCAS.2014.6987810","DOIUrl":null,"url":null,"abstract":"Identifying the mechanism for and predicting the metabolic shift between lipid accumulation and cell growth is a key research issue for microalgal biodiesel production. In this study, we propose a novel way to integrate a metabolic network model with a semi-empirical model (called “Droop model”) for predicting the lipid accumulation and cell growth simultaneously. At each time instant of mass balance model integration, the Droop model is used to predict the cell growth rate. Then, the Flux Balance Analysis (FBA) model is used to predict the rate of lipid accumulation, which is biochemically consistent with the predicted growth rate. In order to test the validity of the proposed approach, experiments are conducted for growing microalgae specie C. reinhardtii in a batch photo-bioreactor. Droop model's parameters are estimated using the gathered data and model predictions for the lipid contents are verified. Parameter sensitivity analysis is conducted to investigate how the various parameters affect the cell growth and lipid accumulation.","PeriodicalId":6525,"journal":{"name":"2014 14th International Conference on Control, Automation and Systems (ICCAS 2014)","volume":"8 1","pages":"1534-1539"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"On integrating the Droop model with the flux balance model for predicting metabolic shifts in microalgae growth\",\"authors\":\"Minkyu Jeon, Boeun Kim, Mingyu Sung, Jay H. Lee\",\"doi\":\"10.1109/ICCAS.2014.6987810\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Identifying the mechanism for and predicting the metabolic shift between lipid accumulation and cell growth is a key research issue for microalgal biodiesel production. In this study, we propose a novel way to integrate a metabolic network model with a semi-empirical model (called “Droop model”) for predicting the lipid accumulation and cell growth simultaneously. At each time instant of mass balance model integration, the Droop model is used to predict the cell growth rate. Then, the Flux Balance Analysis (FBA) model is used to predict the rate of lipid accumulation, which is biochemically consistent with the predicted growth rate. In order to test the validity of the proposed approach, experiments are conducted for growing microalgae specie C. reinhardtii in a batch photo-bioreactor. Droop model's parameters are estimated using the gathered data and model predictions for the lipid contents are verified. Parameter sensitivity analysis is conducted to investigate how the various parameters affect the cell growth and lipid accumulation.\",\"PeriodicalId\":6525,\"journal\":{\"name\":\"2014 14th International Conference on Control, Automation and Systems (ICCAS 2014)\",\"volume\":\"8 1\",\"pages\":\"1534-1539\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 14th International Conference on Control, Automation and Systems (ICCAS 2014)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCAS.2014.6987810\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 14th International Conference on Control, Automation and Systems (ICCAS 2014)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAS.2014.6987810","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

确定脂质积累和细胞生长之间的代谢转变机制并预测其变化是微藻生物柴油生产的关键研究问题。在这项研究中,我们提出了一种新的方法,将代谢网络模型与半经验模型(称为“下垂模型”)结合起来,同时预测脂质积累和细胞生长。在质量平衡模型积分的每一个时刻,用drop模型预测细胞的生长速率。然后利用通量平衡分析(Flux Balance Analysis, FBA)模型预测脂质积累速率,结果与预测的生长速率在生物化学上是一致的。为了验证该方法的有效性,在间歇式光生物反应器中进行了莱茵哈蒂微藻的培养实验。利用收集到的数据估计了下垂模型的参数,并验证了模型对脂质含量的预测。进行参数敏感性分析,探讨各参数对细胞生长和脂质积累的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On integrating the Droop model with the flux balance model for predicting metabolic shifts in microalgae growth
Identifying the mechanism for and predicting the metabolic shift between lipid accumulation and cell growth is a key research issue for microalgal biodiesel production. In this study, we propose a novel way to integrate a metabolic network model with a semi-empirical model (called “Droop model”) for predicting the lipid accumulation and cell growth simultaneously. At each time instant of mass balance model integration, the Droop model is used to predict the cell growth rate. Then, the Flux Balance Analysis (FBA) model is used to predict the rate of lipid accumulation, which is biochemically consistent with the predicted growth rate. In order to test the validity of the proposed approach, experiments are conducted for growing microalgae specie C. reinhardtii in a batch photo-bioreactor. Droop model's parameters are estimated using the gathered data and model predictions for the lipid contents are verified. Parameter sensitivity analysis is conducted to investigate how the various parameters affect the cell growth and lipid accumulation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信