{"title":"重叠随机Wishart矩阵谱的三维高斯起伏","authors":"Jeffrey Kuan, Zhengye Zhou","doi":"10.1142/s2010326322500484","DOIUrl":null,"url":null,"abstract":"In [DP18], the authors consider eigenvalues of overlapping Wishart matrices and prove that its fluctuations asymptotically convergence to the Gaussian free field. In this brief note, their result is extended to show that when the matrix entries undergo stochastic evolution, the fluctuations asymptotically converge to a three-dimensional Gaussian field, which has an explicit contour integral formula. This is analogous to the result of [Bor14] for stochastic Wigner matrices.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Three-dimensional Gaussian fluctuations of spectra of overlapping stochastic Wishart matrices\",\"authors\":\"Jeffrey Kuan, Zhengye Zhou\",\"doi\":\"10.1142/s2010326322500484\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In [DP18], the authors consider eigenvalues of overlapping Wishart matrices and prove that its fluctuations asymptotically convergence to the Gaussian free field. In this brief note, their result is extended to show that when the matrix entries undergo stochastic evolution, the fluctuations asymptotically converge to a three-dimensional Gaussian field, which has an explicit contour integral formula. This is analogous to the result of [Bor14] for stochastic Wigner matrices.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s2010326322500484\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s2010326322500484","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Three-dimensional Gaussian fluctuations of spectra of overlapping stochastic Wishart matrices
In [DP18], the authors consider eigenvalues of overlapping Wishart matrices and prove that its fluctuations asymptotically convergence to the Gaussian free field. In this brief note, their result is extended to show that when the matrix entries undergo stochastic evolution, the fluctuations asymptotically converge to a three-dimensional Gaussian field, which has an explicit contour integral formula. This is analogous to the result of [Bor14] for stochastic Wigner matrices.