拉格朗日和各向同性环面的多面体逼近

IF 0.6 3区 数学 Q3 MATHEMATICS
Yann Rollin
{"title":"拉格朗日和各向同性环面的多面体逼近","authors":"Yann Rollin","doi":"10.4310/jsg.2022.v20.n6.a4","DOIUrl":null,"url":null,"abstract":"We prove that every smoothly immersed 2-torus of $\\mathbb{R}^4$ can be approximated, in the C0-sense, by immersed polyhedral Lagrangian tori. In the case of a smoothly immersed (resp. embedded) Lagrangian torus of $\\mathbb{R}^4$, the surface can be approximated in the C1-sense by immersed (resp. embedded) polyhedral Lagrangian tori. Similar statements are proved for isotropic 2-tori of $\\mathbb{R}^{2n}$.","PeriodicalId":50029,"journal":{"name":"Journal of Symplectic Geometry","volume":"36 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2020-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Polyhedral approximation by Lagrangian and isotropic tori\",\"authors\":\"Yann Rollin\",\"doi\":\"10.4310/jsg.2022.v20.n6.a4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove that every smoothly immersed 2-torus of $\\\\mathbb{R}^4$ can be approximated, in the C0-sense, by immersed polyhedral Lagrangian tori. In the case of a smoothly immersed (resp. embedded) Lagrangian torus of $\\\\mathbb{R}^4$, the surface can be approximated in the C1-sense by immersed (resp. embedded) polyhedral Lagrangian tori. Similar statements are proved for isotropic 2-tori of $\\\\mathbb{R}^{2n}$.\",\"PeriodicalId\":50029,\"journal\":{\"name\":\"Journal of Symplectic Geometry\",\"volume\":\"36 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2020-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Symplectic Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/jsg.2022.v20.n6.a4\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Symplectic Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/jsg.2022.v20.n6.a4","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

我们证明了$\mathbb{R}^4$的每一个光滑浸没的2-环面都可以用浸没的多面体拉格朗日环面在c0意义上近似。在平稳浸没的情况下。嵌入的)拉格朗日环面$\mathbb{R}^4$时,表面可以通过浸入(R}^4$)在c1意义上近似。嵌入的)多面体拉格朗日环面。对于$\mathbb{R}^{2n}$的各向同性2-环面也证明了类似的命题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Polyhedral approximation by Lagrangian and isotropic tori
We prove that every smoothly immersed 2-torus of $\mathbb{R}^4$ can be approximated, in the C0-sense, by immersed polyhedral Lagrangian tori. In the case of a smoothly immersed (resp. embedded) Lagrangian torus of $\mathbb{R}^4$, the surface can be approximated in the C1-sense by immersed (resp. embedded) polyhedral Lagrangian tori. Similar statements are proved for isotropic 2-tori of $\mathbb{R}^{2n}$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Publishes high quality papers on all aspects of symplectic geometry, with its deep roots in mathematics, going back to Huygens’ study of optics and to the Hamilton Jacobi formulation of mechanics. Nearly all branches of mathematics are treated, including many parts of dynamical systems, representation theory, combinatorics, packing problems, algebraic geometry, and differential topology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信