{"title":"拉格朗日和各向同性环面的多面体逼近","authors":"Yann Rollin","doi":"10.4310/jsg.2022.v20.n6.a4","DOIUrl":null,"url":null,"abstract":"We prove that every smoothly immersed 2-torus of $\\mathbb{R}^4$ can be approximated, in the C0-sense, by immersed polyhedral Lagrangian tori. In the case of a smoothly immersed (resp. embedded) Lagrangian torus of $\\mathbb{R}^4$, the surface can be approximated in the C1-sense by immersed (resp. embedded) polyhedral Lagrangian tori. Similar statements are proved for isotropic 2-tori of $\\mathbb{R}^{2n}$.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Polyhedral approximation by Lagrangian and isotropic tori\",\"authors\":\"Yann Rollin\",\"doi\":\"10.4310/jsg.2022.v20.n6.a4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove that every smoothly immersed 2-torus of $\\\\mathbb{R}^4$ can be approximated, in the C0-sense, by immersed polyhedral Lagrangian tori. In the case of a smoothly immersed (resp. embedded) Lagrangian torus of $\\\\mathbb{R}^4$, the surface can be approximated in the C1-sense by immersed (resp. embedded) polyhedral Lagrangian tori. Similar statements are proved for isotropic 2-tori of $\\\\mathbb{R}^{2n}$.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/jsg.2022.v20.n6.a4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/jsg.2022.v20.n6.a4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Polyhedral approximation by Lagrangian and isotropic tori
We prove that every smoothly immersed 2-torus of $\mathbb{R}^4$ can be approximated, in the C0-sense, by immersed polyhedral Lagrangian tori. In the case of a smoothly immersed (resp. embedded) Lagrangian torus of $\mathbb{R}^4$, the surface can be approximated in the C1-sense by immersed (resp. embedded) polyhedral Lagrangian tori. Similar statements are proved for isotropic 2-tori of $\mathbb{R}^{2n}$.