拉格朗日和各向同性环面的多面体逼近

Pub Date : 2020-12-10 DOI:10.4310/jsg.2022.v20.n6.a4
Yann Rollin
{"title":"拉格朗日和各向同性环面的多面体逼近","authors":"Yann Rollin","doi":"10.4310/jsg.2022.v20.n6.a4","DOIUrl":null,"url":null,"abstract":"We prove that every smoothly immersed 2-torus of $\\mathbb{R}^4$ can be approximated, in the C0-sense, by immersed polyhedral Lagrangian tori. In the case of a smoothly immersed (resp. embedded) Lagrangian torus of $\\mathbb{R}^4$, the surface can be approximated in the C1-sense by immersed (resp. embedded) polyhedral Lagrangian tori. Similar statements are proved for isotropic 2-tori of $\\mathbb{R}^{2n}$.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Polyhedral approximation by Lagrangian and isotropic tori\",\"authors\":\"Yann Rollin\",\"doi\":\"10.4310/jsg.2022.v20.n6.a4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove that every smoothly immersed 2-torus of $\\\\mathbb{R}^4$ can be approximated, in the C0-sense, by immersed polyhedral Lagrangian tori. In the case of a smoothly immersed (resp. embedded) Lagrangian torus of $\\\\mathbb{R}^4$, the surface can be approximated in the C1-sense by immersed (resp. embedded) polyhedral Lagrangian tori. Similar statements are proved for isotropic 2-tori of $\\\\mathbb{R}^{2n}$.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/jsg.2022.v20.n6.a4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/jsg.2022.v20.n6.a4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们证明了$\mathbb{R}^4$的每一个光滑浸没的2-环面都可以用浸没的多面体拉格朗日环面在c0意义上近似。在平稳浸没的情况下。嵌入的)拉格朗日环面$\mathbb{R}^4$时,表面可以通过浸入(R}^4$)在c1意义上近似。嵌入的)多面体拉格朗日环面。对于$\mathbb{R}^{2n}$的各向同性2-环面也证明了类似的命题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Polyhedral approximation by Lagrangian and isotropic tori
We prove that every smoothly immersed 2-torus of $\mathbb{R}^4$ can be approximated, in the C0-sense, by immersed polyhedral Lagrangian tori. In the case of a smoothly immersed (resp. embedded) Lagrangian torus of $\mathbb{R}^4$, the surface can be approximated in the C1-sense by immersed (resp. embedded) polyhedral Lagrangian tori. Similar statements are proved for isotropic 2-tori of $\mathbb{R}^{2n}$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信