单跳滤波和局部鞅

A. Gushchin
{"title":"单跳滤波和局部鞅","authors":"A. Gushchin","doi":"10.15559/20-VMSTA153","DOIUrl":null,"url":null,"abstract":"A single jump filtration $({\\mathscr{F}}_t)_{t\\in \\mathbb{R}_+}$ generated by a random variable $\\gamma$ with values in $\\overline{\\mathbb{R}}_+$ on a probability space $(\\Omega ,{\\mathscr{F}},\\mathsf{P})$ is defined as follows: a set $A\\in {\\mathscr{F}}$ belongs to ${\\mathscr{F}}_t$ if $A\\cap \\{\\gamma >t\\}$ is either $\\varnothing$ or $\\{\\gamma >t\\}$. A process $M$ is proved to be a local martingale with respect to this filtration if and only if it has a representation $M_t=F(t){\\mathbb{1}}_{\\{t 0\\}$. This result seems to be new even in a special case that has been studied in the literature, namely, where ${\\mathscr{F}}$ is the smallest $\\sigma$-field with respect to which $\\gamma$ is measurable (and then the filtration is the smallest one with respect to which $\\gamma$ is a stopping time). As a consequence, a full description of all local martingales is given and they are classified according to their global behaviour.","PeriodicalId":8470,"journal":{"name":"arXiv: Probability","volume":"18 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Single jump filtrations and local martingales\",\"authors\":\"A. Gushchin\",\"doi\":\"10.15559/20-VMSTA153\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A single jump filtration $({\\\\mathscr{F}}_t)_{t\\\\in \\\\mathbb{R}_+}$ generated by a random variable $\\\\gamma$ with values in $\\\\overline{\\\\mathbb{R}}_+$ on a probability space $(\\\\Omega ,{\\\\mathscr{F}},\\\\mathsf{P})$ is defined as follows: a set $A\\\\in {\\\\mathscr{F}}$ belongs to ${\\\\mathscr{F}}_t$ if $A\\\\cap \\\\{\\\\gamma >t\\\\}$ is either $\\\\varnothing$ or $\\\\{\\\\gamma >t\\\\}$. A process $M$ is proved to be a local martingale with respect to this filtration if and only if it has a representation $M_t=F(t){\\\\mathbb{1}}_{\\\\{t 0\\\\}$. This result seems to be new even in a special case that has been studied in the literature, namely, where ${\\\\mathscr{F}}$ is the smallest $\\\\sigma$-field with respect to which $\\\\gamma$ is measurable (and then the filtration is the smallest one with respect to which $\\\\gamma$ is a stopping time). As a consequence, a full description of all local martingales is given and they are classified according to their global behaviour.\",\"PeriodicalId\":8470,\"journal\":{\"name\":\"arXiv: Probability\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Probability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15559/20-VMSTA153\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Probability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15559/20-VMSTA153","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

一个随机变量$\gamma$在概率空间$(\Omega ,{\mathscr{F}},\mathsf{P})$上生成一个值为$\overline{\mathbb{R}}_+$的单跳过滤$({\mathscr{F}}_t)_{t\in \mathbb{R}_+}$定义如下:如果$A\cap \{\gamma >t\}$为$\varnothing$或$\{\gamma >t\}$,则$A\in {\mathscr{F}}$属于${\mathscr{F}}_t$。当且仅当一个过程具有表示$M_t=F(t){\mathbb{1}}_{\{t 0\}$时,证明了$M$是关于这个过滤的一个局部鞅。即使在文献中已经研究过的特殊情况下,这个结果似乎也是新的,即${\mathscr{F}}$是最小的$\sigma$ -场,$\gamma$是可测量的(然后过滤是最小的,$\gamma$是停止时间)。因此,给出了所有局部鞅的完整描述,并根据它们的全局行为对它们进行了分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Single jump filtrations and local martingales
A single jump filtration $({\mathscr{F}}_t)_{t\in \mathbb{R}_+}$ generated by a random variable $\gamma$ with values in $\overline{\mathbb{R}}_+$ on a probability space $(\Omega ,{\mathscr{F}},\mathsf{P})$ is defined as follows: a set $A\in {\mathscr{F}}$ belongs to ${\mathscr{F}}_t$ if $A\cap \{\gamma >t\}$ is either $\varnothing$ or $\{\gamma >t\}$. A process $M$ is proved to be a local martingale with respect to this filtration if and only if it has a representation $M_t=F(t){\mathbb{1}}_{\{t 0\}$. This result seems to be new even in a special case that has been studied in the literature, namely, where ${\mathscr{F}}$ is the smallest $\sigma$-field with respect to which $\gamma$ is measurable (and then the filtration is the smallest one with respect to which $\gamma$ is a stopping time). As a consequence, a full description of all local martingales is given and they are classified according to their global behaviour.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信