Sanggil Han, Anastasios G. Polyravas, Shofarul Wustoni, S. Inal, G. Malliaras
{"title":"有机电化学晶体管与植入式探针的集成","authors":"Sanggil Han, Anastasios G. Polyravas, Shofarul Wustoni, S. Inal, G. Malliaras","doi":"10.1002/admt.202100763","DOIUrl":null,"url":null,"abstract":"Organic electrochemical transistors (OECTs) are widely used as amplifying transducers of biological signals due to their high transconductance and biocompatibility. For implantable applications that penetrate into tissue, OECTs need to be integrated onto narrow probes. The scarcity of real estate necessitates the use of small local gate electrodes and narrow interconnects. This work shows that both of these factors lead to a decrease in the maximum transconductance and an increase in gate voltage required to attain this maximum. This work further shows that coating the gate electrode with a thick conducting polymer improves performance. These findings help guide the development of efficient OECTs on implantable probes.","PeriodicalId":7200,"journal":{"name":"Advanced Materials & Technologies","volume":"13 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Integration of Organic Electrochemical Transistors with Implantable Probes\",\"authors\":\"Sanggil Han, Anastasios G. Polyravas, Shofarul Wustoni, S. Inal, G. Malliaras\",\"doi\":\"10.1002/admt.202100763\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Organic electrochemical transistors (OECTs) are widely used as amplifying transducers of biological signals due to their high transconductance and biocompatibility. For implantable applications that penetrate into tissue, OECTs need to be integrated onto narrow probes. The scarcity of real estate necessitates the use of small local gate electrodes and narrow interconnects. This work shows that both of these factors lead to a decrease in the maximum transconductance and an increase in gate voltage required to attain this maximum. This work further shows that coating the gate electrode with a thick conducting polymer improves performance. These findings help guide the development of efficient OECTs on implantable probes.\",\"PeriodicalId\":7200,\"journal\":{\"name\":\"Advanced Materials & Technologies\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials & Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/admt.202100763\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials & Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/admt.202100763","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Integration of Organic Electrochemical Transistors with Implantable Probes
Organic electrochemical transistors (OECTs) are widely used as amplifying transducers of biological signals due to their high transconductance and biocompatibility. For implantable applications that penetrate into tissue, OECTs need to be integrated onto narrow probes. The scarcity of real estate necessitates the use of small local gate electrodes and narrow interconnects. This work shows that both of these factors lead to a decrease in the maximum transconductance and an increase in gate voltage required to attain this maximum. This work further shows that coating the gate electrode with a thick conducting polymer improves performance. These findings help guide the development of efficient OECTs on implantable probes.