基于零频率滤波的鸟类叫声单源与多源识别

Ragini Sinha, Vivek Vadluri, A. Arya, Padmanabhan Rajan
{"title":"基于零频率滤波的鸟类叫声单源与多源识别","authors":"Ragini Sinha, Vivek Vadluri, A. Arya, Padmanabhan Rajan","doi":"10.1109/NCC.2019.8732181","DOIUrl":null,"url":null,"abstract":"In the processing of bioacoustic recordings such as birdcalls, sometimes it is desirable to determine if a recording has one bird calling or has more than one. In this paper, we utilize the well-established zero-frequency filtering method, used for determining significant instants of excitation (also called epochs), for this task. By determining the average number of epochs per second, we are able to reliably discriminate birdcalls made by a single bird from those made by multiple birds. Experimental evaluation on three bioacoustic datasets confirms the reliability of the method. Species identification studies using deep neural network classifiers highlight the utility of the method.","PeriodicalId":6870,"journal":{"name":"2019 National Conference on Communications (NCC)","volume":"85 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Single versus Multi-Source Discrimination in Birdcalls using Zero-Frequency Filtering\",\"authors\":\"Ragini Sinha, Vivek Vadluri, A. Arya, Padmanabhan Rajan\",\"doi\":\"10.1109/NCC.2019.8732181\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the processing of bioacoustic recordings such as birdcalls, sometimes it is desirable to determine if a recording has one bird calling or has more than one. In this paper, we utilize the well-established zero-frequency filtering method, used for determining significant instants of excitation (also called epochs), for this task. By determining the average number of epochs per second, we are able to reliably discriminate birdcalls made by a single bird from those made by multiple birds. Experimental evaluation on three bioacoustic datasets confirms the reliability of the method. Species identification studies using deep neural network classifiers highlight the utility of the method.\",\"PeriodicalId\":6870,\"journal\":{\"name\":\"2019 National Conference on Communications (NCC)\",\"volume\":\"85 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 National Conference on Communications (NCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NCC.2019.8732181\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 National Conference on Communications (NCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NCC.2019.8732181","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在处理诸如鸟叫声之类的生物声学记录时,有时需要确定记录是有一个鸟叫声还是有多个鸟叫声。在本文中,我们利用公认的零频率滤波方法,用于确定激励的重要时刻(也称为时代),为这项任务。通过确定每秒钟的平均次数,我们能够可靠地区分出一只鸟的叫声和多只鸟的叫声。对三个生物声学数据集的实验评估证实了该方法的可靠性。使用深度神经网络分类器的物种识别研究突出了该方法的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Single versus Multi-Source Discrimination in Birdcalls using Zero-Frequency Filtering
In the processing of bioacoustic recordings such as birdcalls, sometimes it is desirable to determine if a recording has one bird calling or has more than one. In this paper, we utilize the well-established zero-frequency filtering method, used for determining significant instants of excitation (also called epochs), for this task. By determining the average number of epochs per second, we are able to reliably discriminate birdcalls made by a single bird from those made by multiple birds. Experimental evaluation on three bioacoustic datasets confirms the reliability of the method. Species identification studies using deep neural network classifiers highlight the utility of the method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信