接触子流形的紧邻域

IF 0.6 3区 数学 Q3 MATHEMATICS
Luis Hern'andez-Corbato, Luc'ia Mart'in-Merch'an, F. Presas
{"title":"接触子流形的紧邻域","authors":"Luis Hern'andez-Corbato, Luc'ia Mart'in-Merch'an, F. Presas","doi":"10.4310/JSG.2020.V18.N6.A4","DOIUrl":null,"url":null,"abstract":"We prove that any small enough neighborhood of a closed contact submanifold is always tight under a mild assumption on its normal bundle. The non-existence of $C^0$--small positive loops of contactomorphisms in general overtwisted manifolds is shown as a corollary.","PeriodicalId":50029,"journal":{"name":"Journal of Symplectic Geometry","volume":"406 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2018-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Tight neighborhoods of contact submanifolds\",\"authors\":\"Luis Hern'andez-Corbato, Luc'ia Mart'in-Merch'an, F. Presas\",\"doi\":\"10.4310/JSG.2020.V18.N6.A4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove that any small enough neighborhood of a closed contact submanifold is always tight under a mild assumption on its normal bundle. The non-existence of $C^0$--small positive loops of contactomorphisms in general overtwisted manifolds is shown as a corollary.\",\"PeriodicalId\":50029,\"journal\":{\"name\":\"Journal of Symplectic Geometry\",\"volume\":\"406 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2018-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Symplectic Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/JSG.2020.V18.N6.A4\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Symplectic Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/JSG.2020.V18.N6.A4","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 5

摘要

在一个温和的假设下,证明了一个闭合接触子流形的任何足够小的邻域总是紧的。在一般的过扭流形中,证明了C^0$——接触同构小正环的不存在性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tight neighborhoods of contact submanifolds
We prove that any small enough neighborhood of a closed contact submanifold is always tight under a mild assumption on its normal bundle. The non-existence of $C^0$--small positive loops of contactomorphisms in general overtwisted manifolds is shown as a corollary.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Publishes high quality papers on all aspects of symplectic geometry, with its deep roots in mathematics, going back to Huygens’ study of optics and to the Hamilton Jacobi formulation of mechanics. Nearly all branches of mathematics are treated, including many parts of dynamical systems, representation theory, combinatorics, packing problems, algebraic geometry, and differential topology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信