肿瘤-正常细胞相互作用脉冲竞争系统的周期解

Jiawei Dou, Weiming Zheng
{"title":"肿瘤-正常细胞相互作用脉冲竞争系统的周期解","authors":"Jiawei Dou, Weiming Zheng","doi":"10.1109/ICBBE.2010.5516323","DOIUrl":null,"url":null,"abstract":"In this work we investigate a problem of existence of positive periodic solutions for a class of impulsive differential equations in the plane. This describes generally the competition between normal and tumor cells in a periodically changing environment under chemotherapeutic treatment. The mathematical problem involves a coupled system of Lotka-Volterra together with periodically pulsed conditions. We use the monotone method to construct the upper and lower sequences converging to the periodic solution of the system.","PeriodicalId":6396,"journal":{"name":"2010 4th International Conference on Bioinformatics and Biomedical Engineering","volume":"62 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The Periodic Solutions of Impulsive Competition System on Tumor-Normal Cell Interaction\",\"authors\":\"Jiawei Dou, Weiming Zheng\",\"doi\":\"10.1109/ICBBE.2010.5516323\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work we investigate a problem of existence of positive periodic solutions for a class of impulsive differential equations in the plane. This describes generally the competition between normal and tumor cells in a periodically changing environment under chemotherapeutic treatment. The mathematical problem involves a coupled system of Lotka-Volterra together with periodically pulsed conditions. We use the monotone method to construct the upper and lower sequences converging to the periodic solution of the system.\",\"PeriodicalId\":6396,\"journal\":{\"name\":\"2010 4th International Conference on Bioinformatics and Biomedical Engineering\",\"volume\":\"62 1\",\"pages\":\"1-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 4th International Conference on Bioinformatics and Biomedical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICBBE.2010.5516323\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 4th International Conference on Bioinformatics and Biomedical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICBBE.2010.5516323","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文研究了一类脉冲微分方程在平面上正周期解的存在性问题。这通常描述了正常细胞和肿瘤细胞在化疗治疗下周期性变化的环境中的竞争。这个数学问题涉及到一个周期性脉冲条件下的Lotka-Volterra耦合系统。利用单调法构造了收敛于系统周期解的上下序列。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Periodic Solutions of Impulsive Competition System on Tumor-Normal Cell Interaction
In this work we investigate a problem of existence of positive periodic solutions for a class of impulsive differential equations in the plane. This describes generally the competition between normal and tumor cells in a periodically changing environment under chemotherapeutic treatment. The mathematical problem involves a coupled system of Lotka-Volterra together with periodically pulsed conditions. We use the monotone method to construct the upper and lower sequences converging to the periodic solution of the system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信