最小翘曲度2的初始交替结

Ayaka Shimizu
{"title":"最小翘曲度2的初始交替结","authors":"Ayaka Shimizu","doi":"10.1142/s0218216520500601","DOIUrl":null,"url":null,"abstract":"The warping degree of an oriented knot diagram is the minimal number of crossing changes which are required to obtain a monotone knot diagram from the diagram. The minimal warping degree of a knot is the minimal value of the warping degree for all oriented minimal diagrams of the knot. In this paper, all prime alternating knots with minimal warping degree two are determined.","PeriodicalId":8454,"journal":{"name":"arXiv: Geometric Topology","volume":"69 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Prime alternating knots of minimal warping degree two\",\"authors\":\"Ayaka Shimizu\",\"doi\":\"10.1142/s0218216520500601\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The warping degree of an oriented knot diagram is the minimal number of crossing changes which are required to obtain a monotone knot diagram from the diagram. The minimal warping degree of a knot is the minimal value of the warping degree for all oriented minimal diagrams of the knot. In this paper, all prime alternating knots with minimal warping degree two are determined.\",\"PeriodicalId\":8454,\"journal\":{\"name\":\"arXiv: Geometric Topology\",\"volume\":\"69 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Geometric Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0218216520500601\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Geometric Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0218216520500601","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

有向结图的翘曲度是指从结图中得到单调结图所需的最小交叉变化数。结的最小翘曲度是结的所有定向最小图的翘曲度的最小值。本文确定了所有最小翘曲度为2的素数交替结。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Prime alternating knots of minimal warping degree two
The warping degree of an oriented knot diagram is the minimal number of crossing changes which are required to obtain a monotone knot diagram from the diagram. The minimal warping degree of a knot is the minimal value of the warping degree for all oriented minimal diagrams of the knot. In this paper, all prime alternating knots with minimal warping degree two are determined.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信