{"title":"飞机载荷下应急抢修路面全尺寸试验","authors":"Jun Zhang, Wei Xu, Peiwei Gao, X. Weng, L. Su","doi":"10.1680/jtran.21.00049","DOIUrl":null,"url":null,"abstract":"In order to reveal structural response law of emergency repair pavement under the airplane loading and verify the backfill material and structural applicability, two craters (Crater 1 composed of 2.4 m thick flying objects (FO) + 0.4 m thick graded crushed rocks (GCR) + 0.2 m thick roller compacted concrete + fibre reinforced plastic (FRP) course, and Crater 2 composed of 2.4 m thick FO + 0.6 m thick GCR + FRP course) were backfilled. Static and dynamic loads were applied using two airplanes. Results show that, laying FRP pavement layers reduced the maximum deflection of Crater 2 by 21%. Crater 1 and concrete pavement were both slightly rigid structures with a strong load transfer ability. The dynamic deflection basin curves of Crater 2 could be fit using a Gaussian function; while the curves of Crater 1 and concrete pavement could be fit using a quartic polynomial. Under static loading, the earth pressures of Crater 2 at −0.6 m, −0.4 m, and −0.2 m sites were 4.3, 9, and 9.6 times of those of Crater 1, respectively. At the −0.2 m site, the earth pressure of Crater 1 was 0.11 MPa, while that of Crater 2 reached 1.06 MPa. The research results can guide the rapid quality inspection and optimization design of emergency repair pavement structure and material.","PeriodicalId":49670,"journal":{"name":"Proceedings of the Institution of Civil Engineers-Transport","volume":"13 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2022-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Full-scale Test on Emergency Repair Pavement under Airplane Loading\",\"authors\":\"Jun Zhang, Wei Xu, Peiwei Gao, X. Weng, L. Su\",\"doi\":\"10.1680/jtran.21.00049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to reveal structural response law of emergency repair pavement under the airplane loading and verify the backfill material and structural applicability, two craters (Crater 1 composed of 2.4 m thick flying objects (FO) + 0.4 m thick graded crushed rocks (GCR) + 0.2 m thick roller compacted concrete + fibre reinforced plastic (FRP) course, and Crater 2 composed of 2.4 m thick FO + 0.6 m thick GCR + FRP course) were backfilled. Static and dynamic loads were applied using two airplanes. Results show that, laying FRP pavement layers reduced the maximum deflection of Crater 2 by 21%. Crater 1 and concrete pavement were both slightly rigid structures with a strong load transfer ability. The dynamic deflection basin curves of Crater 2 could be fit using a Gaussian function; while the curves of Crater 1 and concrete pavement could be fit using a quartic polynomial. Under static loading, the earth pressures of Crater 2 at −0.6 m, −0.4 m, and −0.2 m sites were 4.3, 9, and 9.6 times of those of Crater 1, respectively. At the −0.2 m site, the earth pressure of Crater 1 was 0.11 MPa, while that of Crater 2 reached 1.06 MPa. The research results can guide the rapid quality inspection and optimization design of emergency repair pavement structure and material.\",\"PeriodicalId\":49670,\"journal\":{\"name\":\"Proceedings of the Institution of Civil Engineers-Transport\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Institution of Civil Engineers-Transport\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1680/jtran.21.00049\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Civil Engineers-Transport","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1680/jtran.21.00049","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Full-scale Test on Emergency Repair Pavement under Airplane Loading
In order to reveal structural response law of emergency repair pavement under the airplane loading and verify the backfill material and structural applicability, two craters (Crater 1 composed of 2.4 m thick flying objects (FO) + 0.4 m thick graded crushed rocks (GCR) + 0.2 m thick roller compacted concrete + fibre reinforced plastic (FRP) course, and Crater 2 composed of 2.4 m thick FO + 0.6 m thick GCR + FRP course) were backfilled. Static and dynamic loads were applied using two airplanes. Results show that, laying FRP pavement layers reduced the maximum deflection of Crater 2 by 21%. Crater 1 and concrete pavement were both slightly rigid structures with a strong load transfer ability. The dynamic deflection basin curves of Crater 2 could be fit using a Gaussian function; while the curves of Crater 1 and concrete pavement could be fit using a quartic polynomial. Under static loading, the earth pressures of Crater 2 at −0.6 m, −0.4 m, and −0.2 m sites were 4.3, 9, and 9.6 times of those of Crater 1, respectively. At the −0.2 m site, the earth pressure of Crater 1 was 0.11 MPa, while that of Crater 2 reached 1.06 MPa. The research results can guide the rapid quality inspection and optimization design of emergency repair pavement structure and material.
期刊介绍:
Transport is essential reading for those needing information on civil engineering developments across all areas of transport. This journal covers all aspects of planning, design, construction, maintenance and project management for the movement of goods and people.
Specific topics covered include: transport planning and policy, construction of infrastructure projects, traffic management, airports and highway pavement maintenance and performance and the economic and environmental aspects of urban and inter-urban transportation systems.