{"title":"近场和远场地震作用下LSF系统的HSE评价","authors":"Hossein Mirzaaghabeik, Hamid Reza Vosoughifar","doi":"10.1016/j.psra.2015.11.007","DOIUrl":null,"url":null,"abstract":"<div><p>The Lightweight Steel Framing (LSF) system has been proposed as an economical and earthquake resistant system. Due to the lightweight nature of LSF structures, the seismic performance of middle-rise buildings has been improved. Currently, various numerical-analytical methods have been proposed for seismic assessment of conventional structures. Providing a perfect seismic Health Safety Environment (HSE) index has always been regarded as one of the analytical passive points. In this research, an LSF building was selected as a case study for Finite Element (FE) modelling, in which non-linear time-history analyses were undertaken. Material properties were defined according to the performed experimental studies. A novel approach was presented for the seismic HSE index of LSF systems using the simultaneous incorporation of the non-linear analysis results and the correction coefficient describing the seismic geotechnical effects. The presented seismic HSE index accurately demonstrates the seismic performance of the LSF structures. Additionally, a two-layer perceptron Artificial Neural Network (ANN) was trained using the results of the FE model, and a non-linear relationship was obtained to predict the seismic damage index. Finally, the proposed seismic HSE index was validated using statistical analyses, indicating that the proposed method does not yield a significant difference compared to the ANN results.</p></div>","PeriodicalId":100999,"journal":{"name":"Pacific Science Review A: Natural Science and Engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.psra.2015.11.007","citationCount":"7","resultStr":"{\"title\":\"Evaluation HSE of a LSF system subject to near- and far-field earthquakes\",\"authors\":\"Hossein Mirzaaghabeik, Hamid Reza Vosoughifar\",\"doi\":\"10.1016/j.psra.2015.11.007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The Lightweight Steel Framing (LSF) system has been proposed as an economical and earthquake resistant system. Due to the lightweight nature of LSF structures, the seismic performance of middle-rise buildings has been improved. Currently, various numerical-analytical methods have been proposed for seismic assessment of conventional structures. Providing a perfect seismic Health Safety Environment (HSE) index has always been regarded as one of the analytical passive points. In this research, an LSF building was selected as a case study for Finite Element (FE) modelling, in which non-linear time-history analyses were undertaken. Material properties were defined according to the performed experimental studies. A novel approach was presented for the seismic HSE index of LSF systems using the simultaneous incorporation of the non-linear analysis results and the correction coefficient describing the seismic geotechnical effects. The presented seismic HSE index accurately demonstrates the seismic performance of the LSF structures. Additionally, a two-layer perceptron Artificial Neural Network (ANN) was trained using the results of the FE model, and a non-linear relationship was obtained to predict the seismic damage index. Finally, the proposed seismic HSE index was validated using statistical analyses, indicating that the proposed method does not yield a significant difference compared to the ANN results.</p></div>\",\"PeriodicalId\":100999,\"journal\":{\"name\":\"Pacific Science Review A: Natural Science and Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.psra.2015.11.007\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pacific Science Review A: Natural Science and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2405882315000095\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pacific Science Review A: Natural Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405882315000095","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Evaluation HSE of a LSF system subject to near- and far-field earthquakes
The Lightweight Steel Framing (LSF) system has been proposed as an economical and earthquake resistant system. Due to the lightweight nature of LSF structures, the seismic performance of middle-rise buildings has been improved. Currently, various numerical-analytical methods have been proposed for seismic assessment of conventional structures. Providing a perfect seismic Health Safety Environment (HSE) index has always been regarded as one of the analytical passive points. In this research, an LSF building was selected as a case study for Finite Element (FE) modelling, in which non-linear time-history analyses were undertaken. Material properties were defined according to the performed experimental studies. A novel approach was presented for the seismic HSE index of LSF systems using the simultaneous incorporation of the non-linear analysis results and the correction coefficient describing the seismic geotechnical effects. The presented seismic HSE index accurately demonstrates the seismic performance of the LSF structures. Additionally, a two-layer perceptron Artificial Neural Network (ANN) was trained using the results of the FE model, and a non-linear relationship was obtained to predict the seismic damage index. Finally, the proposed seismic HSE index was validated using statistical analyses, indicating that the proposed method does not yield a significant difference compared to the ANN results.