时滞阶段结构捕食-食饵系统的定性分析

Lingshu Wang, Guanghui Feng
{"title":"时滞阶段结构捕食-食饵系统的定性分析","authors":"Lingshu Wang, Guanghui Feng","doi":"10.1109/ICBBE.2010.5515803","DOIUrl":null,"url":null,"abstract":"A delayed and stage-structured predator-prey system with Holling type-II functional response is discussed. By using the normal form theory and center manifold theorem, the linear stability of the system is investigated and Hopf bifurcations are established. Formula determining the direction of bifurcations and the stability of bifurcating periodic solutions are given. Numerical simulations are carried out to illustrate the theoretical results.","PeriodicalId":6396,"journal":{"name":"2010 4th International Conference on Bioinformatics and Biomedical Engineering","volume":"170 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Qualitative Analysis of a Delayed and Stage-Structured Predator-Prey System\",\"authors\":\"Lingshu Wang, Guanghui Feng\",\"doi\":\"10.1109/ICBBE.2010.5515803\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A delayed and stage-structured predator-prey system with Holling type-II functional response is discussed. By using the normal form theory and center manifold theorem, the linear stability of the system is investigated and Hopf bifurcations are established. Formula determining the direction of bifurcations and the stability of bifurcating periodic solutions are given. Numerical simulations are carried out to illustrate the theoretical results.\",\"PeriodicalId\":6396,\"journal\":{\"name\":\"2010 4th International Conference on Bioinformatics and Biomedical Engineering\",\"volume\":\"170 1\",\"pages\":\"1-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 4th International Conference on Bioinformatics and Biomedical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICBBE.2010.5515803\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 4th International Conference on Bioinformatics and Biomedical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICBBE.2010.5515803","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

讨论了一类具有Holling ii型功能响应的时滞阶段结构捕食-食饵系统。利用范式理论和中心流形定理,研究了系统的线性稳定性,并建立了Hopf分岔。给出了分岔方向的确定公式和分岔周期解的稳定性。数值模拟验证了理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Qualitative Analysis of a Delayed and Stage-Structured Predator-Prey System
A delayed and stage-structured predator-prey system with Holling type-II functional response is discussed. By using the normal form theory and center manifold theorem, the linear stability of the system is investigated and Hopf bifurcations are established. Formula determining the direction of bifurcations and the stability of bifurcating periodic solutions are given. Numerical simulations are carried out to illustrate the theoretical results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信